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FOREWORD 

This report provides direct input into the Accident Analysis Module (AAM) of the Interactive 
Highway Safety Design Model. The AAM is a tool that highway engineers can use to evaluate 
the impacts of highway design elements in project planning and preliminary design. Three crash 
models were developed relating crashes to three types of rural intersections. These types are: (1) 
three-legged intersections with major four-lane roads and minor two-lane roads that are stop­
controlled, (2) four-legged intersections with major four-lane roads and minor two-lane roads 
that are stop-controlled, and (3) signalized intersections with both major and minor two-lane 
roads. 

Elaborate sets of data were acquired from State data sources (Michigan and California) and 
collected in the field. The final data sets consist of 84 sites of the three-legged intersections, 72 
sites of the four-legged intersections, and 49 sites of the signalized intersections. Negative 
binomial models - variants of Poisson models that allow for overdispersion - were developed 
for each of the three data sets. Significant variables included major and minor road traffic; peak 
major and minor left-tum percentage; peak truck percentage; number of driveways; and 
channelization, intersection median widths, vertical alignment, and, in the case of signalized 
intersections, the presence or absence of protected left-tum phases. Separate models were 
developed for crashes resulting in injuries and total crashes. 

Michael F. Trentacoste 
Director, Office of Safety 

Research and Development 

NOTICE 

This document is disseminated under the sponsorship of the Department of Transportation in the 
interest of information exchange. The United States Government assumes no liability for its 
content or use thereof. The report does not constitute a standard, specification, or regulation. 

The United States Government does not endorse products or manufacturers. Trade and 
manufacturers' names appear in this report only because they are considered essential to the 
object of the document. 
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1. INTRODUCTION 

This study develops crash models for: 

• Rural three-legged and four-legged intersections on four-lane highways, stop-controlled on 
the minor legs. 

• Signalized rural intersections of two-lane roads. 

An earlier study,1 of which this may be regarded as a continuation, treats segments of two-lane rural 
roads and rural three- and four-legged intersections of two-lane roads, stop-controlled on the minor 
legs. The two studies together consider the chief geometries on two-lane roads - segments, 
intersections with minor road stop-controlled, and signalized intersections. In addition, this study 
branches out by passing from intersections on two-lane roads to ones on four-lane roads. 

A major intended use of crash models such as the ones developed here is in the Accident Analysis 
component of the Interactive Highway Safety Design Model (IHSDM).2 The IHSDM is a proposed 
set of interactive computer programs that will allow highway designers to examine the safety 
consequences of various design alternatives. These programs will assess how proposed designs 
relate to driver expectations, vehicle and driver capabilities, traffic flows, and established design 
principles. 

The Accident Analysis component, or Accident Analysis Module, is intended to estimate, in 
quantitative terms, the safety effects - crash frequencies and severities - that may result from 
different designs. In addition to driver and vehicle variables, safety is influenced by the volume and 
movement of traffic. It is also influenced by such design features as channelization, horizontal and 
vertical curves, sight distances, and roadside conditions. The module was tentatively envisioned 
(op. cit.) to have four parts, dealing respectively with segment crashes, intersection crashes, 
interchange ramp crashes, and roadside crashes. The safety consequences of a particular design 
would be the sum of the contributions of each part. A model would be developed for each type of 
crash and the models would be combined to yield an overall picture of design consequences. 

1 A. Vogt and J.G. Bared, Accident Models for Two-Lane Rural Roads: Segments and 
Intersections, Report No. FHWA-RD-98-133, Federal Highway Administration, McLean, Va., 
1998; and A. Vogt and J.G. Bared, "Accident Models for Two-Lane Rural Segments and 
Intersections," Transportation Research Record 1635: 19-29, 1998. 

2 J.A. Reagan, "The Interactive Highway Safety Design Model: Designing for Safety by 
Analyzing Road Geometrics," Public Roads: 37-43, Summer 1994. 

H. Lum and J. Reagan, "Interactive Highway Safety Design Model: Accident Predictive 
Module," FHW A Draft 8-22-94. 
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The goal of the present study is to assess the combined and relative effects of highway variables on 
intersection crashes for the classes of intersections noted above. The method used, by now a well­
established method, is that of generalized linear models based on a negative binomial distribution. 
Crashes are thought of as discrete rare events, the number of crashes at an intersection being a 
random variable of the Poisson type with overdispersion. The mean number of crashes is an 
exponential function of a linear combination of intersection variables and the variance in crash 
counts depends on the mean, as well as on an overdispersion parameter representing factors not 
included in the model. 

In Chapter 2, literature on modeling of intersection crashes is reviewed. In Chapters 3 and 4, the data 
collection and preliminary analysis are described, and in Chapter 5, the models are presented and 
evaluated. A final chapter, Chapter 6, summarizes the results of this study. 
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2. LITERATURE REVIEW 

In this chapter, representative studies are reviewed that relate intersection crashes to highway 
variables. The chief highway variables are the Average Daily Traffic (ADT) on the intersecting 
roads, but closer analysis indicates an important role for traffic movements as they pertain to 
different crash types. Most studies recognize that other variables, such as sight distances and 
channelization, also affect safety, and some studies that consider these other variables are discussed 
below. In addition, a number of studies are reviewed that examine the issue of the appropriate model 
form and/or :functional form for mean number of crashes. Studies that deal with special issues, such 
as underreporting of crashes and crash location, are also noted. 

This review is not meant to be exhaustive. Further review of the literature and many additional 
references may be found in the articles cited here. Of particular value for its up-to-dateness is the 
MRI Report (1997).3 Our interest is rural intersections and, where possible, we shall emphasize 
studies in rural settings. 

The chapter closes with a few overall conclusions. 

CRASHES AND TRAFFIC 

Many studies have been devoted to the relationship between crashes and traffic. 

A 1953 study by McDonald4 in California of intersections on divided highways, stop-controlled on 
the minor legs, represents crashes per year in graphical form as a function of major and minor road 
incoming daily traffic. A total of 150 three-legged and four-legged intersections on U.S. 99 and U.S. 
40 were treated together and a dependency of the form: 

was found where N is the number of crashes per year, V d is entering major road Average Daily 

3 Midwest Research Institute, Critical Reviews of Intersection Safety Studies Task K 
Resource Paper, MRI Report, Contract No. DTFH61-96-C-00055, MRI Project No. 4584-09, 
Kansas City, Mo., 1997. 

4 J.W. McDonald, "Relation Between Number of Accidents and Traffic Volume at 
Divided-Highway Intersections," Highway Research Board Bulletin 74, Traffic-Accident 
Studies, pp. 7-17, National Academy of Sciences, National Research Council, Washington, 
D.C., 1953. 
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Traffic (ADT), and Ve is entering minor road ADT. This study advocates crashes per year rather 
than crashes per million entering vehicles as a measure of intersection safety, and emphasizes that 
crash experience at an individual intersection is a variable, while N is the mean for an aggregate of 
intersections with the given volumes. Median widths, channelization, and number oflanes at sample 
intersections were not explicitly noted. The study concludes that crashes are more sensitive to minor 
road volumes. Of interest is that the minor road ADT in this study was based on weekday 24-hour 
mechanical traffic counts at most sites and may be more accurate than that in other studies. 

Another study in California, by Webb5 in 1955, examines two-phase signalized intersections and 
arrives at the equations: 

Nu = 0.000189(ADTJ)0
·
55(ADT2)0

·
55 

NS = 0.00389(ADTJ)0
.4

5(ADT2) 0
·
38 

NR = 0.00103(ADTJ)0
·
51(ADT2) 0

·
29 

where Nu, Ns, and NR, respectively, are the number of crashes per year at urban, semi-urban, and 
rural two-phase intersections, and ADTl and ADT2 are major and minor road two-way average daily 
traffic counts (units have been adjusted from the original study). The three categories were 
determined by speed limits: 25 mph (40.2 km/h) was regarded as urban; more than 25 mph (40.2 
km/h) but less than 45 mph (72.4 km/h) as semi-urban; and 45 mph (72.4 km/h) or more as rural. 
Intersections having unusual features were eliminated, and the resulting sample sizes were 23, 60, 
and 14 intersections for urban, semi-urban, and rural, respectively. Some of those that remained 
were on four-lane divided highways. Rear-end crashes on the minor road, a county road, were 
omitted, and the author notes that this may, in part, be responsible for the decreasing power of minor 
road ADT as one moves from urban to rural and from lower to higher major road speeds. The author 
also notes that intersection geometry, roadside development, and sight distance are influential causal 
factors for crashes. Hauer and Persaud (1996, p. 84)6 find Webb's equation for NR the most plausible 
among available studies. 

5 G.M. Webb, "The Relation Between Accidents and Traffic Volumes at Signalized 
Intersections," Institute of Transportation Engineers Proceedings, Technical Session No. 3B, 
pp. 149-167, 1955. 

6 E. Hauer and B. Persaud, Safety Analysis of Roadway Geometry and Ancillary Features, 
Transportation Association of Canada, Ottawa, 1996. 
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Yet another California study, David and Norman (1975),7 considers crash factors at San Francisco 
Bay Area intersections, but only at intersections with at least two crashes in the time period 1971-
1973. This study includes numerous tabular presentations of crash counts for ranges of crash factors. 
Crashes were classified by severity and by traffic conflicts and movements. Let us call the 
conflict/movement categories "Typical" and "Other." The study includes a linear regression model 
for the number of "Typical" intersection crashes per 3 years. The chief factors in the model in 
decreasing order of importance (as measured by R-squared statistics), along with the sign of their 
effect, are: 

+ A measure of traffic volume based on "Typical" conflict/turning 
movement. 

+ Number of "Other" crashes in time period. 
+ Number of U-tum restrictions. 

Number of right-tum lanes. 
Number oflanes on major road. 

+ Stop-controlled versus signalized (0 versus 1 ). 
+ Width of minor road. 

Number of divided streets. 
Number ofleft-turn lanes. 

This model (David and Norman, 1975, p. 105) was based on 82 intersections for which directional 
ADT data were available. David and Norman note, as does Webb, that introduction ofleft-tum lanes 
at signalized intersections without conversion of two-phase signals into three or more phases tends 
to increase crash counts. For a sample of 558 intersections, the percentage of nighttime crashes was 
usually 20 to 30%, with no notable variation when lighting was present. Possibly, the percentage 
of crashes at the lighted intersections would have been higher if they had not been lighted. 

Hakkert and Mahal el ( 1978)8 observe that more than 50% of crashes occur at intersections. They 
analyze four-legged intersections in terms of24 crossing or merging pairs of traffic flows (vehicles 
per unit time). For each pair, they calculate the product of the two flows and sum over all 24 pairs 
to obtain a traffic flow index x. For urban and interurban intersections in Israel, they obtain a 
Poisson-type model of the form: 

N =A +Bx 

7 N.A. David and J.R. Norman, Motor Vehicle Accidents in Relation to Geometric and 
Traffic Features of Highway Intersections, Volume II - Research Report, Report No. FHW A-RD-
76-129, Federal Highway Administration and National Highway Traffic Safety Administration, 
Washington, D.C., 1975. 

8 A.S. Hakkert and D. Mahalel, "Estimating the Number of Accidents at Intersections 
From a Knowledge of the Traffic Flows on the Approaches," Accident Analysis and Prevention 
10: 69-79, 1978. 
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where N is the mean number of crashes per unit time at the intersection and A and B are suitable 
positive constants. The crashes were injury or fatality crashes, the roads a mix of two-lane and four­
lane, and the intersections a mix of signalized and non-signalized. Traffic flows for the modeling 
were based on 16-hour weekday counts. The presence of the constant term A is taken as evidence 
that for small values ofx, other factors come into play. 

Pickering, Hall, and Grimmer (1986)9 consider crashes at three-legged intersections of two-lane 
roads. They report that in 1983, one-third of injury crashes occurred at intersections, and 45% of 
these were at tee intersections. Their basic model is a Poisson model, with mean number of crashes 
per unit time N of the form: 

N = K(ADTJ x ADT2'f 

where pis approximately 0.5. They consider such issues as how far a crash is from the intersection, 
presence or absence of islands and channelization, and the dependence of crashes on pairs of traffic 
flows. For different crash types, products of the relevant flows tended to be most significant, but the 
model above performed respectably when all types of crashes were summed. Motorcycles and 
bicycles were involved in a disproportionate number of crashes relative to their percentage of the 
flow. Operating speeds of vehicles were significant, but depending on the type of crash, higher 
speeds did not always lead to more frequent crashes. 

A study of Hauer, Ng, and Lovell (1988),10 based on 145 signalized intersections in Toronto, 
considers 15 different crash patterns and develops negative binomial models for each pattern of the 
forms: 

N=KxFa 

N = K x F/ x F 2b 

depending on whether one flow For two flows F 1 and F2 are involved, with a, b ~ 0. Here N is the 
mean number of crashes of the given pattern on the population of all intersections having these 
flows. Crashes are weekday daytime crashes involving two vehicles. The number of lanes on the 
roads and the channelization are not noted This study is notable for, among other things, its very 
thoughtful explication of assumptions underlying the use of the negative binomial model. 

9 D. Pickering, R.D. Hall, and M. Grimmer, Accidents at Rural T-Junctions, Research 
Report 65, Transport and Road Research Laboratory, Department of Transport, Crowthome, 
Berkshire, United Kingdom, 1986. 

10 E. Hauer, J.C.N. Ng, and J. Lovell, "Estimation of Safety at Signalized Intersections," 
Transportation Research Record 1185: 48-61, 1988. 
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Bonneson and McCoy (1993) 11 develop a negative binomial model of the form: 

N = K x (ADTJ)0
·
256(ADT2)0

·
831 

Here N is the mean number of crashes. The overdispersion parameter for this model is 4.0, which 
is rather large. A total of 125 non-urban four-legged intersections from Minnesota were considered 
in the study, 17 of which had four-lane major roads with substantial medians. All crashes occurring 
within 500 feet (153 meters) of the intersection were included. 

VARIABLES BESIDES TRAFFIC 

The primary importance of traffic as an explanatory factor for intersection crashes relative to other 
highway variables has long been acknowledged, and recent studies do not contradict this observation. 
The study of Bauer and Harwood (1996) 12 concludes that highway variables other than traffic have 
only a slight influence on crashes. A review, described by Bauer and Harwood, of hard-copy crash 
reports at eight urban intersections found that "only 5 to 14% of the accidents had causes that 
appeared to be related to geometric design features of the intersections." The report of Vogt and 
Bared (Vogt and Bared, 1998, p. 137), which develops crash models for three-legged and four­
legged intersections of rural two-lane roads, attributes about 2% explanatory value to design 
variables as compared with 27% to ADT. 

Nonetheless, designs aimed at improving safety will always be in demand, and attempts to quantify 
design effect are entirely proper. Design variables that have received special attention in connection 
with intersection crashes include: channelization, sight distances, horizontal and vertical alignment, 
intersection angle, median width, and signal characteristics. Also noted below are the effects of 
truck percentage in the traffic stream, speed, and weather. 

Channelization 

It is generally thought that right-tum and left-tum lanes on major and/or minor roads contribute to 
intersection safety. The model of David and Norman (1975) mentioned earlier indicates that left­
and right-tum lanes reduce crashes. They also list left-tum storage lanes as one of six "demon­
strably accident-related" intersection design features, but they find that opposing left-turn lanes 
without multi-phasing or at stop-controlled intersections increase crashes. They suggest raised lane 
markers to help drivers define their lateral location and multi-phasing at signalized intersections. The 

11 J.A. Bonneson and P.T. McCoy, "Estimation of Safety at Two-Way Stop-Controlled 
Intersections on Rural Highways," Transportation Research Record 1401: 83-89, 1993. 

12 K.M. Bauer and D. Harwood, Statistical Models of At-Grade Intersection Accidents, 
Report No. FHW A-RD-96-125, Federal Highway Administration, McLean, Va., 1996. 
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summary of Kuciemba and Cirillo (1992) 13 mentions channelization, along with sight distance 
improvement, as a safety factor for intersections where turning traffic is high. Use oflane dividers 
is recommended in urban settings, while left <urn lanes in rural areas are expected to reduce passing 
crashes. The study of Bauer and Harwood (1996) finds that left-tum lanes lower crashes, although 
curbed dividers may not be more effective than painted ones. A study of McCoy, Hoppe, and 
Dvorak (1985)14 points out that left-tum lanes may be more necessary in the absence of paved 
shoulders or when truck percentages are high. The study of Pickering, Hall, and Grimmer (1986) 
finds channelization, including islands, to be significant for certain crash types, but not for total 
crashes. Garber and Srinivasan (1991) 15 in a study of elderly drivers conclude that left-turn lanes 
(and protected phasing) would have special benefits for the elderly because of their proclivity for 
crashes with opposing traffic. 

Sight Distance 

Intersection sight distances are an intuitively evident safety consideration at intersections. They are 
noted as such by David and Norman (1975) and in the summary of Kuciemba and Cirillo (1992). 
A study of Hanna, Flynn, and Tyler (1976)16 notes that sight distances on all approaches, for both 
non-signalized and signalized intersections, affect crash rates in the expected way. Bared and Lum 
(1992)17 also find that sight distances are shorter at high-crash intersections. 

Horizontal and Vertical Alignment 

Horizontal and vertical alignment are, of course, related to sight distances. Horizontal curves, in 
particular, are associated with high crash rates. Their effects on roadway crashes are noted in the 

13 S.R. Kuciemba and J.A. Cirillo, Safety Effectiveness of Highway Design Features. 
Volume V -Intersections, Report No. FHWA-RD-91-048, Federal Highway Administration, 
Washington, D.C., 1992. 

14 P.T. McCoy, W.J. Hoppe, and D.V. Dvorak, "Benefit-Cost Evaluation of Left-Tum 
Lanes on Uncontrolled Approaches of Rural Intersections (Abridgement)," Transportation 
Research Record 1025: 40-43, 1985. 

15 N.J. Garber and R. Srinivasan, "Risk Assessment of Elderly Drivers at Intersections: 
Statistical Modeling," Transportation Research Record 1325: 17-22, 1991. 

16 J.T. Hanna, T.E. Flynn, and W.L. Tyler, "Characteristics oflntersection Accidents in 
Rural Municipalities," Transportation Research Record 601: 79-82, 1976. 

17 J.G. Bared and H. Lum, "Safety Evaluation of Intersection Design Elements (Pilot 
Study)," Transportation Research Board Conference Presentation, Washington, D.C., 1992. 
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report of McGee, Hughes, and Daily (1995)18 and the references cited therein, as well as in the study 
of truck crashes by Miaou, Hu, Wright, Davis, and Rathi (1993) 19

; the paper ofShankar, Mannering, 
and Barfield (1995)20

; and the paper of Vogt and Bared (1998). This paper and the FHWA report 
of Vogt and Bared (1998) also exhibit intersection crash models for three-legged and four-legged 
intersections of two-lane roads in which the average degree of curve for nearby horizontal curves and 
the average grade change per 100 feet (30.1 meters) for nearby crest curves are represented. These 
curves are required to be on the major road, with some portion within 250 feet (76 meters) of the 
intersection center. The minor roads are stop-controlled. Although the alignment variables are not 
particularly significant (with P-values on the order of 0.30), they correlate reasonably well with crash 
counts, especially on the four-legged intersections. 

One oddity on the subject of alignments is the finding of Hanna et al. (1976) that steep grades tend 
to decrease intersection crash counts. Grades different from zero appear to increase crash counts on 
segments according to Miaou et al. (1993), Shankar et al. (1995), and Vogt and Bared (1998). 

Intersection Angle 

Right-angled intersections are encouraged in design. A study of McCoy, Tripi, and Bonneson 
(1994)21 indicates that severely skewed intersections have higher crash experience. However, Bared 
and Lum (1992) find right-angled intersections more dangerous than mildly skewed ones. This is 
also supported by Bauer and Harwood (1996) for urban signalized intersections and by Vogt and 
Bared (1998) for rural stop-controlled intersections of two-lane roads. A study ofKulmala (1995)22 

suggests that when major road turning traffic that must cross the opposing major road lane(s) turns 

18 H.W. McGee, W.E. Hughes, and K. Daily, Effect of Highway Standards on Safety, 
National Cooperative Highway Research Program Report 374, Transportation Research Board, 
National Research Council, National Academy Press, Washington, D.C., 1995. 

19 S.-P. Miaou, P.S. Hu, T. Wright, S.C. Davis, and A.K. Rathi, Development of 
Relationship Between Truck Accidents and Geometric Design: Phase I, Report No. FHW A-RD-
91-124, Federal Highway Administration, McLean, Va., 1993. 

20 V. Shankar, F. Mannering, and W. Barfield, "Effect of Roadway Geometrics and 
Environmental Factors on Rural Freeway Accident Frequencies," Accident Analysis and 
Prevention 27 (3): 371-389, 1995. 

21 P.T. McCoy, E.J. Tripi, and J.A. Bonneson, Guidelines for Realignment of Skewed 
Intersections, Nebraska Department of Roads Research Project Number RESl (0099) P471, 
1994. 

22 R. Kulmala, Safety at Three- and Four-Arm Junctions: Development and Application 
of Accident Prediction Models, VTT Publication 233, Technical Research Centre of Finland, 
Espoo, 1995. 
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through an angle from 0 ° to 90 °, fewer crashes occur than when the turning angle is from 90 ° to 
180°. This is presumably because traffic exiting from the major road has better sight of oncoming 
major road traffic for small angles. The intersection models of Vogt and Bared support this 
conclusion in the case of four-legged intersections, but not in the case of three-legged ones. 

Median Width, Surface Width, and Shoulder Width 

Wider medians are generally associated with fewer crashes on divided highways. See the study of 
Knuiman, Council, and Reinfurt (1993).23 At intersections, a median region allows a zone of 
protection for turning traffic (although ifthe zone is too wide, it converts one intersection into two). 
Harwood et al. (1995)24 find that increased median widths are associated with fewer crashes at rural 
unsignalized intersections, but with more crashes at suburban signalized intersections. 

Bauer and Harwood (1996) find that increased lane widths and increased shoulder widths lower the 
probability of serious crashes and/or multiple-vehicle crashes at urban non-signalized intersections. 

Signal Characteristics 

King and Goldblatt (1975)25 discuss the important issue of whether signalization decreases crashes. 
Their study and some others have found no significant decrease, but rather a change in the relative 
:frequencies of crash types (from right-angle to rear-end). The commonly accepted view is that at 
high-volume intersections, signalization is beneficial, but that at low-volume ones, it may not be. 

With regard to phasing, David and Norman (1975) indicate that protected left turns are beneficial. 
For the elderly, this is supported by Garber and Srinivasan (1991), who also propose a longer amber 
light. Bauer and Harwood (1996) likewise find a beneficial effect for multi-phase, rather than two­
phase, signaling in their modeling of urban intersections, as well as for actuated signals versus pre­
timed ones. 

Lighting 

Bauer and Harwood (1996) find that the absence oflighting contributed significantly to the number 

23 M.W. Knuiman, F.M. Council, and D.W. Reinfurt, "Association of Median Width and 
Highway Accident Rates," Transportation Research Record 1401: 70-82, 1993. 

24 D.W. Harwood, M.T. Pietrucha, M.D. Woolridge, R.E. Brydia, and K. Fitzpatrick, 
Median Intersection Design, National Cooperative Highway Research Program Report 375, 
Transportation Research Board, National Research Council, National Academy Press, Washing­
ton, D.C., 1995. 

25 G.F. King and R.B. Goldblatt, "Relationship of Accident Patterns to Type of 
Intersection Control," Transportation Research Record 540: 1-12, 1975. 
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of injury crashes at rural three-legged and four-legged intersections. A study by Blower, Campbell, 
and Green (1993)26 indicates that truck crashes in Michigan are more frequent at night and in rural 
settings; the combination of the two is deemed to imply less lighting. See also the study of Elvik 
(1995).27 

Roadside Conditions 

Vogt and Bared (1998) find that roadside hazards, as measured by the Roadside Hazard Rating of 
Zeeger et al. (1987), contribute to crashes on three-legged intersections, while driveway density near 
the intersection center contributes to crashes on four-legged intersections. 

The Roadside Hazard Rating is a whole number from 1 to 7 (with 1 representing perfectly flat and 
unobstructed roadsides, the least hazardous case) that evaluates sideslope, clear zone, and distance 
to the nearest hard object. In the Vogt-Bared study, the value is a subjective average along the major 
road within± 250 feet (76.2 meters) of the intersection center. Although it is reasonable that nearby 
driveways might make an intersection more dangerous, the Vogt-Bared results are based on 
Minnesota data and it was not possible to eliminate driveway crashes explicitly from the data set. 

Truck Percentage 

David and Norman (1975) note the safety-relatedness of bus routing and zones, of clearly visible 
street name signs, and of raised markers and striping to indicate turning lanes and to remind the 
driver of intersection control features. Their study is primarily urban, but the routing of buses and 
the placement of bus zones can be thought of as the equivalent of truck traffic and truck turning 
percentages. Not only are trucks more difficult to maneuver and potentially more likely to cause 
serious crashes, but they are also obstacles that interfere with the line of sight of drivers (including 
the truck driver making a turn). 

Blower, Campbell, and Green (1993) find that significant causative factors for truck crashes are: 
rural environment, nighttime, and road type "other" (versus "major arterial" or "limited access"). 
Furthermore, bobtail trucks (no tractor) are more crash-prone than single or double tractors. McCoy, 
Hoppe, and Dvorak (1985), as noted, favor left-tum lanes when truck percentages are high. 

Miaou et al. (1993) and the Vogt-Bared (1998) FHWA report find that a higher percentage of truck 
traffic is associated, respectively, with fewer truck crashes and fewer crashes on rural roads. Miaou 
et al. (1993, p. 62) suggest that perhaps "for a constant vehicle density, as percent trucks increases, 
the frequency of lane changing and overtaking movements by cars decreases." 

26 D. Blower, K.L. Campbell, and P.E. Green, "Accident Rates for Heavy Truck-Tractors 
in Michigan," Accident Analysis and Prevention 25 (3): 307-321, 1993. 

27 R. Elvik, "Meta-Analysis of Evaluations of Public Lighting as Accident Countermeas­
ures," Transportation Research Record 1485: 112-123, 1995. 
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Speed 

Bauer and Harwood (1996) find that crash rates increase with increasing design speed on four-legged 
rural intersections. Vogt and Bared (1998) find the same for posted speeds on rural three-legged and 
four-legged intersections. Pickering, Hall, and Grimmer (1986) observe that higher operating speeds 
at three-legged intersections are associated with more right-tum crashes, but with fewer crashes of 
other types. 

Weather 

Bad weather is recognized as a contributing factor to crashes. Shankar, Mannering, and Barfield 
(1995) call attention to the interaction of extreme weather and extreme alignment. Miaou et al. 
(1993) note the relevance of weather to truck crashes. Fridstrnm et al. (1995)28 in a study of 
Scandinavian roadway crashes find weather significant, although bad weather does not always 
increase crashes. Vogt and Bared ( 1998), using a regional, but not particularly local weather variable 
in Minnesota, find that weather conditions do not have a strong effect on crashes. 

MODEL FORMS AND FUNCTIONAL FORMS 

State of the Art 

In recent years, a consensus has formed in favor of modeling crashes as discrete, rare, independent 
events. In a static environment, such events can be characterized by their mean number A per unit 
time and are simply represented by a Poisson random variable, i.e., the probability that y crashes will 
be observed per unit time is: 

P(Y = y) 
-,1 }i.Y 

= e -
y! 

where y = 0, 1, 2, .... To proceed further, one analyzes the mean A in terms of familiar variables that 
characterize or partially characterize the crash location (in our case, an intersection). Thus, one 
assumes that 

28 L. Fridstrnm, J. lfver, S. lngebrigtsen, R. Kulmala, and L.K. Thomsen, "Measuring the 
Contribution of Randomness, Exposure, Weather, and Daylight to the Variation in Road 
Accident Counts," Accident Analysis and Prevention 27 (1): 1-20, 1995. 
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that is, A. is taken to be a function of suitable variables x0, x1, ••• , xm pertaining to the intersection. 
This function is also assumed to depend on parameters pi that are independent of the intersection. 
The form of the function f is up to the modeler except that it is required not to yield negative values. 
At different intersections, the variables xi may take different values, so different intersections may 
have different mean crash counts A.. 

A commonly used functional form is the generalized linear one: 

(2.1) 

This form guarantees a non-negative integer value for the mean number of crashes per unit time. A 
major attraction of the form is that it is possible to estimate the coefficients Pi from data using 
methods originated by Nelder and Wedderburn (1972)29 and implemented by the software packages 
SAS and LIMDEP. If the first variable x0 is taken to be identically equal to 1, the combination in 
equation (2.1) includes a constant term p0, sometimes called the intercept term. Another advantage 
is easy comparability with existing models since the form A.= exp(p0 + P1x 1 + P2x2) can easily be 
converted to the multiplicative form A.= K(y1)P

1 (y2)P2
, where K = exp(P0), y1 = exp(x1), and y2 = 

exp(x2). The multiplicative form is common in earlier studies. 

The model form equation (2.1) is based on the assumptions that crashes are independent events, that 
suitable input variables xi are discoverable taking fixed values at the intersection on some 
appropriate time scale, and that the functional form in equation (2.1) is superior to other possible 
forms. It is useful to act as if these assumptions are approximately true, in part because they yield 
an analytically tractable generalized linear model and in part because they have proved their worth 
elsewhere in biology and economics. 

A refinement of this approach, described in Hauer, Ng, and Lovell (1988), is to acknowledge that 
the mean for a particular intersection is unknowable and to consider an imaginary population of 
intersections all having the same values for the variables xi and having means that are grouped 
around the value A. in equation (2.1 ). The variance of the crash counts of the intersections in this 
population depends on further assumptions, but can be taken to have the form: 

(2.2) 

where K is a parameter, applicable to the entire population but independent of the particular 
intersection, called the overdispersion parameter. The variance of crash counts has two components, 
the first due to Poisson variation and the second due to differences among members of the 

29 J.A. Nelder and R.W. Wedderburn, "Generalized Linear Models," Journal of the Royal 
Statistical Society, Series A, 135(3): 370-384, 1972. 
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population, the latter perhaps due to omitted variables. Dean and Lawless ( 1989)30 propose that the 
mean of individual intersections in the population is equal to a multiplier times the value A. in 
equation (2.1 ), and that the multiplier is a continuous positive random variable with mean 1 and 
variance K having the same distribution at each intersection. From this, they derive the overall 
variance (2.2). The number of crashes Y per unit time at individual intersections is distributed 
according to a compound Poisson distribution: Y given the intersection mean is a Poisson variable, 
but the intersection mean itself is a variable. It is customary to assume that this variable obeys a 
gamma distribution on each population and hence that Y obeys a negative binomial distribution. 

With the assumptions that A is given by equation (2.1) and that K is independent of { xJ, it is 
possible to estimate the parameters {Pj} and Kin LIMDEP and SAS by maximum likelihood 
methods. When prior crash experience is known at a particular intersection, along with the variables 
xi, the negative binomial form makes it possible to revise the estimated crash count for a new time 
period by empirical Bayesian methods. See the discussion on p. 15 below. 

Relevant Literature 

Many of the studies alluded to earlier in this chapter have used Poisson and negative binomial 
models. Hakkert and Mahalel (1977) use a Poisson model with some refinements to study 
intersection crashes. Pickering, Hall, and Grimmer (1986), in their study of tee intersections, use 
a Poisson model along with the generalized linear model technique (and the software packages 
GENSTAT and GLM). Maycock and Hall (1984),31 studying roundabouts, and Hauer, Ng, and 
Lovell (1988), studying urban intersections, employ the negative binomial technique. A sampling 
of other studies that have used negative binomial models includes: Miaou et al. (1993) - truck 
roadway crashes; Bonneson and McCoy (1993) - rural intersection crashes; Knuiman, Council, and 
Reinfurt (1993) - divided highway crashes; Fridstrnm et al. (1995) - roadway crashes; Poch and 
Mannering (1996)32 

- urban intersection crashes; Bauer and Harwood (1996) - intersection crashes; 

3° C. Dean and J.F. Lawless, "Tests for Detecting Overdispersion in Poisson Regression 
Models," Journal of the American Statistical Association 84 ( 406): 467-4 72, 1989. 

31 G. Maycock and R.D. Hall, Accidents at 4-Arm Roundabouts, Laboratory Report 1120, 
Transport and Road Research Laboratory, Department of Transport, Crowthome, Berkshire, 
United Kingdom, 1984. 

32 M. Poch and F. Mannering, "Negative Binomial Analysis oflntersection-Accident 
Frequencies," Journal of Transportation Engineering 122 (2): 105-113, 1996. 
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and Vogt and Bared (1998) - rural segment and rural intersection crashes. 

Miaou et al. (1993), Bauer and Harwood (1996), and Vogt and Bared (1998) make use of both 
Poisson and negative binomial models. Miaou and Lum (1993)33 compare two linear regression 
models and two Poisson models, prefer the latter, and indicate that the negative binomial or "double 
Poisson" may be even better. Miaou (1994)34 compares Poisson models and negative binomial 
models and indicates that both kinds of models have their place, with negative binomial to be 
preferred if the data are sufficiently overdispersed. 

Empirical Bayesian Methods 

Hauer, Ng, and Lovell (1996, p. 56) note that the negative binomial model permits past information 
about an intersection to be incorporated into modeling with relative ease. The essential idea is that 
intersections in the imaginary population with identical values of {xJ have their mean grouped 
around the value A. in equation (2.1 ), but past experience at an intersection gives some indication of 
where in this grouping the intersection mean is likely to be. If an intersection has had A crashes in 
the past T time units, then the grand mean A. and the crash count variance A. + KA. 2 are no longer 
applicable. Instead, for the sub-population with the given crash experience, crash counts still obey 
a negative binomial distribution, but the appropriate grand mean is: 

= A.(l +AK) 

I + KA.T 

and the total variance of crash counts on members of this sub-population is: 

where 

K 
Knew= ---

1 +AK 

(2.3) 

(2.4) 

The overdispersion parameter decreases in equation (2.4) if A> 0, and the grand mean increases or 

33 S.-P. Miaou and H. Lum, "Modeling Vehicle Accident and Highway Geometric 
Design Relationships," Accident Analysis and Prevention 25 (6): 689-709, 1993. 

34 S.-P. Miaou, "The Relationship Between Truck Accidents and Geometric Design of 
Road Sections: Poisson Versus Negative Binomial Regressions," Accident Analysis and Pre­
vention 26 (4): 471-482, 1994. 
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decreases in equation (2.3) depending on whether the crash experience is above average (A> A. T) 
or not. 

Further discussion of this methodology is to be found in Hauer, Terry, and Griffith (1994),35 

Pendleton (1996),36 Hauer and Persaud (1996), and the book of Hauer (1997).37 

Hauer's book explores a variety of issues that relate to the use of crash models. His chief point is 
that ifthe goal is increased safety, cross-sectional studies are inadequate by themselves. Before-and­
after studies are needed, and the effect of"regression to the mean" must be taken into account. This 
can be done with suitable models, based in part on cross-sectional studies, for reference populations 
that incorporate year-by-year crash data. Methods for predicting future trends are offered, along with 
ways to compare the safety of treated and untreated intersections in light of the models and crash 
history. 

Alternative Functional Forms 

Hakkert and Mahalel (1978) use a traffic flow index and a "sum of products" approach to modeling 
intersection crashes. Hauer, Ng, and Lovell (1988) analyze crashes by patterns and have a model 
for each approach pattern. Thus, it is desirable to have enough data by pattern to build separate 
models for each. Then the mean count for each type of crash can be summed to obtain an overall 
mean. 

Miaou (1994) considers, in addition to Poisson and negative binomial models, zero-inflated Poisson 
(ZIP) models. These are Poisson models adjusted by increasing the probability of zero crashes (and 
rescaling the remaining probabilities so that the sum is still one). Miaou concludes that these are 
useful when there is underreporting of crashes, so that some locations have undeserved zero crash 
counts. 

Bauer and Harwood (1996) do Poisson and negative binomial modeling, but they also exhibit a 
lognormal model where the log of the number of crashes is regarded as a normal variable with mean 
µ and variance a2

• Log µ is assumed to be a linear function of intersection variables, while the 
variance is constant. They find this model useful for classes of high crash intersections (where few 
intersections have zero crashes in the time period under consideration). 

35 E. Hauer, D. Terry, and M.S. Griffith, "Effect of Resurfacing on Safety of Two-Lane 
Rural Roads in New York State," Transportation Research Record 1467: 30-37, 1994. 

36 0. Pendleton, Evaluation of Accident Methodology, Report No. FHWA-RD-96-039, 
Federal Highway Administration, McLean, Va., 1996. 

37 E. Hauer, Observational Before-After Studies in Road Safety, Pergamon Press, Oxford, 
U.K., 1997. 
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Lau and May (1988)38 use Classification and Regression Trees (CART) to study intersection crashes. 
Data are divided into classes by binary trees of multiple levels until terminal nodes are reached (ones 
from which little further improvement can be made). A split is based on dividing a sample into two 
sub-samples so that the combined weighted variance of the two strata is a minimum for the residual 
crash count (left over from the previous split). This method seems to be applicable when most 
variables are categorical rather than continuous. Predicted crash counts under this approach may be 
modified on the basis of individual intersection histories. 

Joksch and Kostyniuk (1998)39 apply smoothing techniques to study the relationship between 
intersection crashes and major and minor road ADT. They consider crashes by type at stop­
controlled and signalized intersections. After some data smoothing, surfaces are developed to 
represent crash as a function of major and minor road ADT for each class of intersections. They find 
that the crash surface for urban signalized intersections in California contains a "ridge": for 
reasonably large major road volumes, as minor road ADT increases, crash counts rise to a maximum 
near 20,000 vehicles per day and then decrease for higher minor road traffic. Figure 23 (op. cit., p. 
76) also shows a plateau and perhaps a ridge as major road ADT increases. 

Special Studies 

Pickering, Hall, and Grimmer (1986) study intersection crashes within 20 meters of rural tee 
intersections and within 100 meters of these intersections. They find that crashes from 20 to 100 
meters away are three or four times as common as crashes on segments of similar length. Far from 
the intersection center, head-on crashes are more frequent; close to the center, turning crashes 
dominate. They raise the delicate issue of what an intersection-related crash really is. 

Hauer and Hakkert (1988)40 estimate that fatal crash counts are accurate to within 5%, serious injury 
crash counts to within 20%, and minor injury counts to within 50%. Reporting varies with the 
driver, the location, and the time. The count of fatalities can also vary with the quality and 
timeliness of medical attention, even with progress in medicine. Property damage crashes have 
threshold reporting requirements and are subject to inflation as repair costs rise. These 
considerations and similar ones are important caveats for modelers. 

38 M.Y.-K. Lau and A.D. May, Accident Prediction Model Development: Signalized 
Intersections, Research Report UCB-ITS-RR-88-7, Institute of Transportation Studies, 
University of California, Berkeley, Ca., 1988. 

39 H.C. Joksch and L.P. Kostyniuk, Modeling Intersection Accident Counts and Traffic 
Volume, Report No. FHWA-RD-98-096, Federal Highway Administration, McLean, Va., 
1998. 

40 E. Hauer and A.S. Hakkert, "Extent and Some Implications of Incomplete Accident 
Reporting," Transportation Research Record 1185: 1-10, 1988. 
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The statistical abstract of Tessmer (1996)41 reports that from 1975 to 1993, there were more than 
420,000 fatal crashes in rural areas versus about 300,000 fatal ones in urban areas in the Fatal 
Accident Reporting System (FARS), despite fewer vehicle-miles driven (14.2 trillion versus 19.7 
trillion (22.9 trillion versus 31.7 trillion vehicle-kilometers)). Also noted was the rural time delay 
in receiving medical attention. About 77% of the rural fatal crashes involved trucks versus about 
62% of urban fatal crashes. A higher percentage of single-vehicle fatal crashes, and a lower 
percentage of multiple-vehicle crashes, occurred in rural settings than in urban settings in sampled 
States. 

CONCLUSIONS 

The issues in model development include: model form, choice of variables, and interpretation. 

Models of the Poisson and negative binomial types, with mean a generalized linear function of 
covariates, have the dual virtues of being tractable computationally with present software and of 
capturing the discrete, random, non-negative integer character of crash counts. The log-linearity in 
these models also permits equations of traditional multiplicative types, and hence easy comparison 
with the results of earlier studies. 

Although coefficients in both the Poisson and negative binomial types tend to be similar, the 
negative binomial has additional advantages. The presence of an overdispersion factor offers a way 
to account for omitted variables (the larger this parameter is, the more important such variables are). 
It also offers the possibility of combining the given model with empirical data from the past at a 
given intersection to obtain Bayesian refinements of the model predictions. 

With regard to choice of variables, there is an infinity of possibilities, although resources are finite. 
Most of the variables discussed above are collected in this study, with the exception of weather. 
These variables further proliferate through mathematical transformations, e.g., composite measures 
of horizontal and vertical alignment near an intersection, or sight distance averages, or estimates of 
daily traffic by incoming and outgoing intersection leg. Transformations are suggested by past 
practice and common sense, but new combinations are always possible. In the analysis of the sample 
data in Chapter 4, correlations between crashes and variables are examined. These correlations, and 
successive ones found between residuals and variables, serve to select the variables used in the 
models. The selection should also be influenced by engineering judgment so that variables found 
to be important in the literature, or considered so by designers, receive full consideration. 

Finally, there is the question of model interpretation. The studies above note that many factors 
influence crashes. However, a quantitative agreement on their relative importance has not been 

41 J.M.Tessmer, Rural and Urban Crashes: A Comparative Analysis, Report No. DOT­
HS-808-450, U.S. Department of Transportation, National Highway Traffic Safety 
Administration Technical Report, Washington, D.C., 1996. 
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achieved. What a model can do, chiefly, is to summarize sample data. It can indicate which 
variables are most important with regard to the crashes on the sample intersections. Because of 
collinearity (i.e., two or more variables that are strongly dependent through design or coincidence), 
there is no guarantee that for variables present in the model, causation has been established. A 
model selects the variables that look "best" on the given data, and related variables may thereby be 
omitted. It is thus wise to identify families or clusters of variables that are related and tentatively 
view these families as the causal factors. Since families overlap, this task is not simple. 

Using a model that summarizes to predict is best done with even more engineering judgment. The 
model summarizes a data set, but there are sampling and non-sampling errors in the data. Often what 
one wishes to predict has new or different factors influencing it. One is dealing with a moving 
target. Thus, judgment and some flexibility are in order. 
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3. DATA COLLECTION 

The data collected in this study come from two primary sources: Highway Safety Information System 
(HSIS) files for California and Michigan, and field visits to the intersections made by Pragmatics 
personnel. 

This chapter discusses the populations from which the data were selected, sample selection, data 
collection techniques, and data limitations. 

THE POPULATIONS 

The States and the Three Data Classes 

An issue of early importance for this study was the selection of States in which to carry out the 
sampling. HSIS has extensive files for eight States - California, Illinois, Maine, Michigan, 
Minnesota, North Carolina, Utah, and Washington. File formats and contents vary from State to 
State. For three of the States - California, Michigan, and Minnesota - separate HSIS intersection 
files exist, while for another three - North Carolina, Utah, and Washington - there is no HSIS 
intersection information. Maine has node-and-link files (intersection-and-segment); Illinois treats 
intersections as segments of zero length. California gives details about signal characteristics; Illinois 
gives details about medians. Neither Illinois nor Michigan has minor road ADT available, except 
for cases in Michigan where the minor road, like the major road, is a State road. 

The three intersection classes in this study were originally intended to be signalized three- and four­
legged rural intersections of two-lane roads, along with four-legged rural intersections of a four-lane 
road with a two-lane stop-controlled minor road. However, examination of data bases for California, 
Michigan, and Minnesota indicated that there were very few signalized three-legged rural inter­
sections of two-lane roads. The same indication came from information on three State routes in 
Washington. See Table 1. "Other" refers almost exclusively to stop-controlled on the minor road, 

TABLE 1 F . requency o rs· r d R IT L 1gna 1ze ura wo- ane I t f . F n ersec ions m our s tates 

Rural two-lane roads Three-legged intersections Four-legged intersections 

signalized other signalized other 

California - 1995 14 (0.2%) 6126 (99.8%) 35 (1.9%) 1832 (98.1 %) 

Michigan - 1994 16 (0.2%) 6513 (99.8%) 158 (4.1%) 3722 (95.9%) 

Minnesota - 1992 4 (0.3%) 1307 (99.7%) 11 (0.7%) 1591 (99.3%) 

Washington* - ca. 1993 2 (0.3%) 645 (99.7%) 10 (5%) 190 (95%) 

*Routes 002, 009, 101 only. 

21 



but includes a few cases of flashers, and stop-controls on the major road. Of chief concern is not the 
low percentages, but rather the low absolute numbers, which might make acquisition of samples of 
adequate sizes difficult. Thus, these intersections were replaced by three-legged rural intersections 
with four-lane major roads and two-lane stop-controlled minor legs. 

Table 1 reveals a similar, but less drastic, shortage of four-legged signalized rural intersections of 
two-lane roads. California has relatively few of them, especially for such a large State. On the other 
hand, Michigan appears from this table to have an adequate number for sampling. 

In order to gain useful variety in the analysis, California and Michigan were chosen for the modeling 
effort, with the possibility, if resources permitted, of addition of a third State later. 

Constraints imposed on the populations from which the samples were chosen were as follows: 

1. Three-legged rural intersections, major road four-lane, minor leg two-lane stop-controlled: 
median width less than or equal to 36 feet (11 meters) on major road, all approaches two­
way, stop-controlled on minor leg only. 

2. Four-legged rural intersections, major road four-lane, minor legs two-lane stop-controlled: 
median width less than or equal to 36 feet (11 meters) on major road, all approaches two­
way, stop-controlled on minor legs only. 

3. Four-legged rural signalized intersections, major and minor roads two-lane: all approaches 
two-way. 

Implementing these constraints was not completely straightforward. The California (CA) and 
Michigan (MI) HSIS intersection files had no information on whether intersections were rural or 
urban, nor on median widths, while Mi's intersection file had no information on number of lanes. 
To obtain these items, the intersections were linked with segments in the CA and MI Roadlog files 
where such information was available. 

For CA, a Roadlog variable entitled RU _IO was available to indicate whether the segment was rural, 
urbanized, or urban and inside a city or outside a city. For this study, we elected to use those 
marked as "rural, outside city" and did not include those that were rural, but inside or partly inside 
a city. The numbers for CA in Table 1 would have increased by only a small amount if other rural 
categories were added. For MI, a Roadlog variable entitled RURURB, with three rural categories 
(rural, rural dense small city, and rural small city boundary), was available. In the case of Michigan, 
all three categories were allowed. Roughly 50% of the Michigan intersections fell under "rural" and 
roughly 50% under "rural dense small city," and very few fell in the third category. 

An intersection in CA or MI was considered rural if a neighboring segment was rural according to 
the classification above. In addition, in the case of Michigan, since the intersection file did not 
include a lane count, the major road was assumed to be either two-lane or four-lane, depending on 
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how the segments adjacent to the intersection were described in the Michigan Roadlog file. 

Pilot Studies 

Pilot studies were conducted :from bases in Sacramento, CA, and Lansing, MI, in March and May 
1997, respectively, with a view to visiting all intersections sufficiently close to the State capitals as 
resources permitted. 

In the case of California, 115 intersections in Districts 3, 4, 10, and the northern part of 6 (within 
approximately 250 miles (402 kilometers) of Sacramento) were qualified for membership in the 
populations on the basis of HSIS data. In Michigan, the pilot study concentrated on signalized 
intersections, and 66 such intersections were identified in Districts 5, 6, 7, 8, and 9 from the HSIS 
data base. 

In both States, photologs were examined for all such intersections. If the photolog indicated that the 
intersection was not rural (e.g., curb parking, significant urban build-up for several blocks) or the 
lane count was incorrect or the signalization (several flashers were found that had been listed as fully 
signalized) or there was an adjacent intersection within 500 feet (152.4 meters) on the major road, 
then the intersection was eliminated. Thereafter, site visits were made to most of the intersections, 
additional intersections were eliminated by the site visit, and data were collected at the remaining 
ones. Even among those for which data were collected, in some cases, it was unclear whether they 
should be considered rural or urban. Table 2 indicates the disposition of the pilot study samples. 

TABLE 2. Pilot Study Intersections in California and Michigan 

California Michigan 

sample units - three-legged 28 

sample units - four-legged 27 

sample units - signalized 10 23 

Y intersections 6 

disqualified :from photologs 25 13 

disqualified :from visits 13 17 

too remote/isolated 6 13 

Total 115 66 

Table 2 reveals some difficulties that were to affect the entire study. Photo logs did not match what 
was in the HSIS data base in a fair number of cases, and site visits revealed that changes not shown 
in the photologs had also taken place. This was particularly true of the Michigan signalized 
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intersections. The Y intersections, three-legged intersections with two legs diverging from the third, 
were included in the pilot study, but it was later decided to eliminate them from the full data 
collection in part because of their relative rarity. A few intersections in both States were excluded 
from visits on the grounds that they were too remote or isolated. 

The issue of how to handle remote and/or isolated intersection sites is a rather delicate one since it 
relates to both resource consumption and sample integrity. Rural intersections can be few and far 
between. To conserve resources, it is advisable to select intersections that are in close proximity to 
one another and to a suitable base of operation where junior highway engineers can be recruited for 
field work. With Sacramento or Lansing as a base, there were numbers of intersections each of 
which would require an overnight trip for two people, with driving time to and from and downtime 
between morning and evening traffic counts (if the site was not disqualified). While distances in 
California are well-lmown, it is less well-lmown that the distance from Lansing, Michigan, to the 
farthest reach of Michigan's Upper Peninsula, 550 miles (885 kilometers), is greater than Lansing's 
distance to New York City, about 500 miles (805 kilometers). Paradoxically, the most classically 
rural intersections, ones without suburban or small town features, are likely to be far from each other 
and far from suitable bases of operation and thus require disproportionate resources to visit. If 
intersections are close to each other, within a few miles, so that a team can visit several in the same 
day, the independence of the sample may be jeopardized. If they are close to a central point, such 
as a major city or the State capital, they are likely to be less rural and to be in transition. 

During the pilot studies, in addition to examination of photo logs and field work, construction plans 
and aerial photographs were reviewed, and the possibility of obtaining crash reports was 
investigated. Aerial photographs, photologs, and some (but not all) horizontal construction plans 
were available in the Traffic Operation Office at Caltrans headquarters in Sacramento. More 
complete computerized vertical and horizontal plans were not available, since the computer 
application that accessed them was undergoing major repair and renovation. At a later date, this 
system was running, but some plans were found to be missing and others were difficult to locate. 
District Offices in California, 11 in all, also have construction plans and hard-copy crash reports, but 
these offices are understaffed and the Project Team was told that retrieval would take much time. 
Caltrans personnel did indicate that the HSIS crash file for California would have numerous 
variables from which crash details could be reconstructed. Michigan had aerial photographs for 
many intersections in Southern Michigan taken in the years from 1972 to 1988, and some negatives 
for photos from prior years. Michigan also had a library of construction plans (maps, microfilms, 
and hanging files, depending on the year), although a fire in 1955 had destroyed some plans and 
others were misfiled. Road segments will have as many as 50 jobs and corresponding plans. For 
a minor job, the plan will not show the alignments of the road. The Project Team was told that, in 
Michigan, confidentiality laws make crash reports difficult to obtain since preliminary deletions by 
State employees are required. Although Michigan photologs were one cycle more recent than those 
of FHW A in McLean, Virginia, numerous discrepancies were found among the HSIS files, the 
photologs, and site visit observations. 
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In both the California and Michigan pilot studies, field work was done at all intersections. The 
typical routine was a morning site visit to hand-count traffic (on specially designed tally sheets). 
Thereafter, radar guns were used to determine operating speeds for samples of vehicles approaching 
the intersection on each leg. These measurements were made at discreetly placed locations before 
vehicles began to slow for the intersection. Speeds would be determined only for the lead car in a 
platoon, and the angle between the radar path and the direction of vehicle travel was noted to permit 
calculation of true travel speed. Typically, 25 measurements would be made if the leg traffic was 
adequate. If the traffic was light, as many measurements as a 15- to 20-minute stay would permit 
would be made. Measuring wheels were used to pace off sight distances. Other intersection features 
and geometry were recorded, as well as signal characteristics at signalized intersections. In the late 
afternoon, a second traffic count would be done. In the case of Michigan, where only signalized 
intersections were visited, computerized plate counters were also used to measure minor leg traffic. 
The plate counters were nailed to the minor road at mid-day and left there for 24 hours. They were 
recovered on a subsequent visit to the intersection and unwrapped. Data were downloaded from 
them and they were recharged and rewrapped for the next count. Three people were required for 
placement of the plate counters since traffic had to be disrupted. For all site visits, permits were 
required from District Offices, and safety precautions, including wearing of hardhats and orange 
vests, and placement of cones and signs, were taken. 

Pilot study data were subsequently used to prepare some small special studies. Three kinds of speed 
data were compared: posted speeds obtained by inspection along intersection legs, operating speeds 
measured by radar guns, and speeds recorded by the plate counters. The plate counters also 
permitted a determination of 24-hour truck percentages, and these could be compared with observed 
peak-hour truck percentages from the manual traffic counts. To assess the "intersection-relatedness" 
of crashes, a review was also undertaken on the area of influence of an intersection for a few pilot 
study intersections. The results of these investigations are reported in the appendix to this report. 

SAMPLE SELECTION 

After both pilot studies were completed, the studies were assessed and plans were made for the 
subsequent main data collection effort. The chief decisions made were to restrict attention to tee 
intersections and omit Y intersections,42 to measure horizontal and vertical alignments at each 
intersection rather than attempt to extract this information from plans or photos, to discontinue the 
minor leg plate counts, and to follow an informal sample selection plan. 

42 A three-legged intersection is a T intersection (or tee) when "two of the three intersec­
tion legs form a through road and the angle of intersection is not acute"; it is a Y intersection (or 
wye) when "all three intersection legs have a through character or the intersection angle with the 
third intersection leg is small." These definitions are taken from p. 836 of A Policy on Geometric 
Design of Highways and Intersections (also known as the "Green Book"), American Association of 
State Highway and Transportation Officials, Washington, D.C., 1994. 
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Three-legged intersections for the main data collection effort were restricted to T intersections 
because of the relative scarcity ofY intersections and in the interest of sample homogeneity. Sample 
homogeneity contributes to successful modeling by removing variables that will not be modeled. 
However, such homogeneity can only be achieved to a limited extent. Too many restrictions (e.g., 
requiring that all intersections have lighting, that they all have medians of a certain type, that they 
have ADT in a certain narrow range, etc.) can be counterproductive. There may be too few 
intersections meeting all the constraints to be useful for modeling, and data collection from all of 
them to maximize sample size may be too expensive if they are geographically dispersed. The 
distinction between T and Y intersections is of recognized importance, T intersections are favored 
by intersection designers, and restricting the sample to T intersections was judged to pose no 
problem. 

Collection of alignment data during the field work and discontinuation of minor leg plate counts 
were undertaken for reasons of economy. 

In both Michigan and California, the availability and accessibility of plans showing recorded 
alignments were in doubt. Plans and photos were sought for sub-samples of the pilot study samples 
in both States, and for roughly 30% of the intersections in the sub-samples, no information could be 
found. Since morning and afternoon traffic counts were to be done at each intersection, acquisition 
of alignment data at midday did not seem to be unduly burdensome for field workers. At 
intersections visited in the pilot studies, alignment data had not been collected, but revisits during 
other field work could be done without hardship. 

With respect to the plate counters, the pilot study revealed that they provided good data, but that they 
were resource-intensive and that the data were not essential to the overall effort. The plate counters 
are HISTAR units that detect changes in the magnetic field above the roadway. The associated 
computer data are generated and printed with NU-METRICS software. Information available 
includes: counts of incoming vehicles by type, counts of occupants per vehicle, vehicle speeds, 
weather conditions (temperature and precipitation), and gaps between vehicle arrival times. During 
the Michigan pilot study, the weather variables did not seem reliable, and the counters did not work 
properly on occasion. At two intersections, they were placed on major roads for which ADT was 
available. The count at one of these roads was 4,400 vehicles per day versus 6,400 vehicles per day 
according to HSIS files. The difference is that the plate count data is for one day in 1997 and the 
HSIS data is a State estimate for 1993-1995. The plate counters do not determine turning 
movements, and manual counts still have to be done at each intersection to obtain these. The plate 
counts, as already noted, require two visits spaced 24 hours apart with adequate personnel to ensure 
safety during placement and removal. Thus, to conserve resources, they were omitted in the main 
data collection effort. For Michigan intersections where minor road ADT was not available, major 
road ADT plus 1997 peak-hour traffic counts, in particular ratios of traffic by movement, were used 
to estimate minor road ADT. This method, while making use of 1997 data to estimate minor road 
ADT for earlier years, is arguably more reliable than using an absolute 1997 count. 
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Both pilot studies revealed that field work at rural intersections is time-consuming. Rural 
intersections suitable for the study, especially signalized ones, tended to be few and far between, as 
noted earlier. In some cases, overnight lodgings were required both before and after in order for 
Project Team members to get to a site at an adequately early hour and remain there until an 
adequately late hour. During the Michigan pilot study, a number of intersections thought to be in 
the population on the basis of HSIS files and Michigan photologs were found to be unqualified at 
a site visit, primarily because they were not at all rural. 

An informal sampling plan, as follows, was developed. Complete lists of intersections whose HSIS 
records satisfied the constraints had been developed. All intersections within approximately a 3- to 
4-hour drive from Sacramento or Los Angeles or Lansing were automatically included in the sample, 
together with a few other selected intersections at farther distances. Photo logs were reviewed for 
all of these, some were disqualified as a result, and with the exception of those that had been in the 
pilot study and a few especially remote ones in California, all of the remaining ones were pre-visited 
prior to the field work. The purpose of the pre-visit was to ascertain whether each intersection was, 
in fact, qualified - no legs or medians closed, no offsets, no additional lanes or legs, number of 
lanes unchanging out to ±800 feet (243.8 meters), no urbanization, with signalization or signage as 
advertised. In addition, a large number of intersections were eliminated because they were too close 
to other intersections of the same type and were likely to have strongly correlated data values. This 
was especially true for the three-legged and four-legged non-signalized intersections. In both States, 
such intersections tended to be grouped on a relatively small number of highways and tended to be 
placed along these highways in close sequence. 

Pre-visits by senior Project Team members were found to be very useful since field workers would 
not spend unnecessary time at unqualified intersections and the senior members of the team could 
make experienced judgments about the appropriateness of intersections. 

The final samples, including pilot study observations, are shown in Table 3. 

TABLE 3. Samples as Proportions of Nominal Populations 

CA MI Total 

3-legged 601302 (19.9%) 24/93 (25.8%) 84/395 (21.3%) 

4-legged 54/150 (36%) 18/49 (36.7%) 721199 (36.2%) 

Signalized 18/27 (66.7%) 311100 (31%) 491127 (38.6%) 

The first number in Table 3 is the sample size and the second is the nominal population size in the 
State. These numbers are adjusted from Table 1 by elimination of duplicate observations and 
photolog reviews, but the denominators include numerous dependent intersections and, especially 
in the Michigan signalized case, intersections that are no longer rural. The denominators also 
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include remote intersections that were not visited for lack of resources. It should be kept in mind 
that some of these would have been disqualified if they had been visited. 

The informal sample selection method raises the issue ofrepresentativeness. It should be noted that 
crash data were not consulted in selecting the samples, but that there was some tendency to favor 
larger ADT intersections or ones with more irregular alignment when, for example, only one of two 
nearby intersections could be chosen because of dependence. In addition, many, but not all, of the 
most remote intersections in both States were omitted from the samples. 

DATA COLLECTED 

The data collected in this study and the sources are shown in Table 4. 

Highway Safety Information System (HSIS) Data 

Average Daily Traffic (ADT} data and crash data were extracted from HSIS files. 

ADT data were extracted from HSIS Intersection and Roadlog files. For California, major and minor 
road ADT were available in HSIS intersection files for the years 1993, 1994, and 1995. For 
Michigan, ADT data were available in HSIS Roadlog files for segments of State roads, although 
1993 data were unavailable and had to be interpolated from 1992 data. 

HSIS crash variables for 1993, 1994, and 1995 were consulted. These include Accident Location 
variables, Accident Number, Accident Severity, Accident Type, Number of Vehicles, Vehicle 
Motion Prior to Accident (MISCACTl ). All variables, but the last, are in the HSIS Accident file for 
the State. The last is in the HSIS Vehicle file. 

Traffic-Count Variables 

For all intersections in the study, field counts were done on traffic during morning and evening 
hours. Due to limited resources, the counts were not done at a fixed time, but were typically done 
in the morning for about 45 minutes between 7:00 a.m. and 9:30 a.m. and in the afternoon between 
3:30 p.m. and 6:00 p.m. The counts were done on non-holiday weekdays. 

In a few cases in California, no traffic was seen emanating from the minor road during the hours of 
visitation. This happened at two three-legged intersections and at two four-legged intersections, all 
of them in California on Route 395. The first two intersections had incoming traffic, but the last two 
had no traffic, incoming or outgoing. These intersections are in high-altitude regions near Mono 
Lake and Independence, the counts were made in the fall of 1997, and traffic may have been reduced 
for seasonal reasons. 
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TABLE 4 V . bl C II t d . th St d . ana es o ec e ID e u lY 

Variable Meaning Units Source 

cnty_rte California (CA) route identifier HSIS 

Identifiers cntl sec Michigan (MI) route identifier HSIS 

milepost intersection center milepost along route miles HSIS 

ADTl CA average daily traffic on major road vehicles HSIS 
at intersection by year per day 

Traffic 
ADT2 CA average daily traffic on minor road vehicles HSIS 

1993-95 at intersection by year per day 

(MI 1992 
ADTM MI average daily traffic on adjacent vehicles HSIS instead of 

MI 1993) segment of State road by year per day 

RAWMPCij no. of cars traveling from leg i to leg j vehicles Field 
in morning count period 

RAWMTRij no. of trucks traveling from leg i to leg vehicles Field 

Peak j in morning count period 

Traffic M HR duration of morning count period hours Field 

MBEG start time of morning count period clock-hours Field 

RAWEPCij no. of cars traveling from leg i to leg j vehicles Field 
in evening count period 

RAWETRij no. of trucks traveling from leg i to leg vehicles Field 
j in evening count period 

EHR duration of evening count period hours Field 

EBEG start time of evening count period clock-hours Field 

HAZRAT Roadside Hazard Rating within ±250 ft 1, 2, 3, 4, 5, Field 
of intersection center on major road 6, 7 

NODRWYRl no. ofresidential driveways within 0, 1, ... Field 
Roadside ±250 ft of intersection on major road 

NODRWYCl no. of commercial driveways within 0, 1, ... Field 
±250 ft of intersection on major road 

NODRWYR2 minor road counterparts for signalized 0, 1, ... Field 
NODRWYC2 intersections only 

1mi=1.61 km, 1 ft= 0.305 m 
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TABLE 4. Variables Collected in the Study (continued) 

I Variable Meaning I Units I Source 

LTLNl no. ofleft-tum lanes on major road 0, l,or2 Field 

Channel- RTLNl no. of right-tum lanes on major road 0, l,or2 Field 

ization LTLN2 no. ofleft-tum lanes on minor road 0, 1,or2 Field 

RTLN2 no. of right-tum lanes on minor road 0, 1, or 2 Field 

MED WIDTH I median width on major road feet Field 

MED TYPE median type of major road none, curbed, Field 

Intersection painted, other 

Geometry DRINCMP direction of increasing mileposts E for east, N Field 
along major road for north 

ANGLEi angle between increas. dir. of major degrees Field 
road and left leg (i =l) or right leg 
(i=2) 

SDi longitudinal sight distance along leg i feet Field 
of major road, i = 1 or 2, or of minor 
road (signalized int. only), i = 3 or 4 

Sight 
SD Li left sight distance along leg i of minor feet Field Distances 

road, i = 3 or 4, or of major road 
(signalized int. only), leg= 1 or 2 

SDRi right sight distance along leg i of feet Field 
minor road, i = 3 or 4 

HBi beginning point of curve no. i (if any feet± from Plans 
Horizontal portion of curve is within ±800 ft of intersection 
alignment intersection center along major road) center 
onmaJor 

HEi end point of curve no. i feet± Plans road 
(and minor 
road of DEGHi degree of curve, curve no. i degrees per Field 
signalized hundred feet 
inter-
sections) DIRi direction along increasing direction of L for left, R Field 

major/minor road of curve no. i for right 

1ft=0.305 m 
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TABLE 4. Variables Collected in the Study (continued) 

I Variable I Meaning I Units I Source 

Vertical VBi beginning point of curve no. i (if any feet± from Field 
alignment portion of curve is within ±800 ft of intersection 
on major intersection center along major road) center 
road (and VEi end point of curve no. feet± Field 
minor road 
of GBi grade prior to curve no. i % Field 
signalized 

GEi grade after curve no. i % Field inter-
sections) GRAD El grade of major road, if only one % Field 

Speed SPDLIMi posted regulatory speed on leg i, if seen mph Field 
Limits 

POST AD Vi posted advisory speed on leg i, if seen mph Field 

SIG TYPE signal type - pre-timed, actuated, or semi- Field 
Signali- actuated 
zation 

PROT LT protected left tum - multiphasing; 0, 1 Field 
1 for yes, 0 for no 

LIGHT 1 if lighting is present, 0 if not 0, 1 Field 
Miscel-
laneous terrain flat, rolling, or mountainous Field 

TOTACC no. of crashes occurring at intersection or 0, 1, ... HSIS 
within ±250 feet of intersection on major 
road during 1993-95 

fatal, injury, no. of fatal, injury, property damage only 0, 1, ... HSIS 

Crash data prop dam crashes, respectively 

head-on, no. of head-on, sideswipe, rear end, 0, 1, ... HSIS 
1993-1995 sideswipe, rear broadside, hit object, overturned, 

end, broadside, pedestrian, or other crashes, respectively 
hit object, 
overturned, 
pedestrian, 
other 

MISCACTl movement of vehicle in crash prior to crash HSIS 
(left tum, etc.) 

1 mph= 1.61 km/h, 1 ft= 0.305 m 
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During the counts, the number of passenger vehicles and the number of trucks entering and leaving 
the intersection were recorded, along with the incoming and outgoing legs. The beginning and 
ending times of the counts were also recorded. A typical duration was 45 minutes. When the data 
were processed later at Pragmatics, Inc., all counts were converted to hourly counts. Intersection 
legs were identified by leg numbers, in the clockwise order 1, 3, 2, 4 shown in Figure 1. Legs 
numbered 1 and 2 are on the major road; from leg 1 to leg 2 is the increasing milepost direction. 
Legs 3 and/or 4 are on the minor road, with leg 3 to the left of the major road's increasing direction. 
For traffic going from leg number i to leg number j, the morning counts were M_PCij and M_TRij 
in vehicles per hour, while the evening counts were E_PCij and E_TRij. The distinction between 
passenger vehicles and commercial vehicles/trucks was based on the number of tires. A commercial 
vehicle was taken to be any vehicle with more than four tires, and included cars with trailers. This 
almost always meant a vehicle with more than two axles. 

Leg 3 

Major Road 

Leg 2 

I 
I 

lj\ Increasing 
1 milepost 
~ direction 

ANGLE! j ANGLE2 

____ Leg4 

Leg I 

Major Road 

FIGURE 1. Intersection Diagram Showing Leg Numbers 

Roadside Variables 

During the field work, the roadside variables Number of Driveways and Roadside Hazard Rating 
(HAZRA T) were collected by inspection. 

The number of driveways within 250 feet (76 meters) of the intersection center was counted along 
the major road. Residential and commercial driveways were counted separately. A gas station with 
two entranceways would be counted as having two commercial driveways. For signalized 
intersections, the number of driveways was also counted on the minor road out to 250 feet (76 
meters). 
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HAZRAT is a variable devised by Zegeer et al. (1987)43 that is an amalgam of sideslope, clear zone, 
and distance to nearest hard object. It takes whole number values from 1 to 7, with 7 being the most 
hazardous. Field workers were provided with images of typical roadsides with different ratings, and 
at site visits, they made estimates of the average rating of the major road within 250 feet (76 meters) 
of the intersection center. 

Channelization and Intersection Geometry 

At each intersection, field workers recorded left- and right-turning lanes on all approaches, median 
widths and characteristics, and intersection angles. At a three-legged intersection, the number ofleft­
turn lanes on the major road, or right-tum lanes, is always 0 or 1, and likewise on the minor road. 
At a four-legged intersection, signalized or not, the number ofleft-turn lanes on each road, or right­
turn lanes, is 0, 1, or 2. The measured intersection angles, ANGLE I and ANGLE2, are between legs 
2 and 3 and between legs 2 and 4, respectively. See Figure 1. In California, intersections are 
squared up by policy, i.e., although the basic angle between the major and minor roads may be 
substantially different from 90 degrees, the minor road will curve sharply within a few car lengths 
of the intersection to create a right angle. Field workers were instructed to record the large-scale 
angle of the approach when very sharp curves of this type were present. 

Sight Distances 

Sight distances were estimated longitudinally on the major road and left and right on each minor leg. 
At three-legged intersections, the longitudinal sight distance was only measured in one direction, 
e.g., ifthe third leg was leg 3 in Figure 1, then the sight distance from leg 1 to leg 2 was measured, 
but not from leg 2 to leg 1. Likewise, at signalized intersections, left sight distances were not 
measured. For the signalized intersections, longitudinal and left sight distances were estimated on 
all legs. When a protected left tum exists from leg 1 to leg 3, one may argue that longitudinal sight 
distance from leg 1 to leg 2 is unimportant. 

The Green Book (1994, p. 702) recommends that left and right intersection sight distances from the 
minor road be measured at 6 meters (20 feet) from the edge of the traveled way. At many 
intersections, this yields very little sight distance, and only a foolhardy driver would decide to enter 
the intersection from this location. An alternative standard is 3 meters (10 feet) from the edge of the 
traveled way, approximately the location of a seated driver prior to entering the intersection. The 
latter standard has apparently been adopted by many States, and is the one that was used in 
measurements here. For longitudinal sight distance (along the major road from one lane to the 
opposing lane), measurements were made from the edge of the traveled way of the minor road in the 
leftmost incoming lane of the major road. The driver's eye was assumed to be at a height of 1070 
millimeters (3.5 feet) and the object viewed was assumed to have a height of 1300 millimeters ( 4.25 

43 C.V. Zegeer, J. Hummer, D. Reinfuhrt, L. Herf, and W. Hunter, Safety Cost­
Ejfectiveness of Incremental Changes in Cross-Section Design - Information Guide, Report No. 
FHWA-RD-87-094, Federal Highway Administration, Washington, D.C., 1987. 
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feet). See the Green Book, pp. 136-7. 

Sight distances, if they were sufficiently short, were paced off with a measuring wheel to record the 
distance. If they were many hundreds of feet long, they were estimated with a range finder. The 
latter is an optical device with two light paths from the distant object to the eyepiece. Then a dial 
is turned until the two images of the object merge, and a distance can be read from the dial. 

Horizontal Alignment 

Horizontal curves were recorded for the major road and, in the case of signalized intersections, for 
the minor road. A segment from 800 feet (244 meters) before the intersection to 800 feet after the 
intersection was determined, and any horizontal curve that overlapped this segment was included. 
For each such horizontal curve, the beginning and end points were noted, along with the direction 
of curvature and the degree of curve. Measuring wheels and chalk were used to determine beginning 
points and endpoints. Degree of curve was measured by marking off a straight line distance, 
typically 100 feet (30.5 meters), between two points at the edge of the traveled way, and calculating 
the perpendicular distance at the midpoint to the edge of the traveled way. The degree of curve, in 
degrees per 100 feet (30.5 meters), is then calculated from the formula: 

DEGH = 
18000 x 8 x H 

1t x (4H 2 + L 2
) 

where L is the length of the straight line in feet and His the perpendicular distance in feet. (The 
metric equivalent is DEGHm = DEG/0.305 in degrees per 100 meters.) No adjustment was made for 
the roadway width. Even on a four-lane road, an adjustment that replaces the edge of the traveled 
way by the centerline of the road would typically change the value by no more than a few percent. 

Vertical Alignment 

As with horizontal curves, vertical curves were recorded that overlapped a segment out to ± 800 feet 
(244 meters) from the intersection center along the major road and, for signalized intersections, 
along the minor road. Beginning points and endpoints of each vertical curve were determined with 
measuring wheels and chalk. Then, incoming and outgoing grades were estimated at the beginning 
and end of each curve. Grades were considered positive if they were uphill in the direction from leg 
1 to leg 2, the increasing direction of the major road, or from leg 3 to leg 4 along the minor road. 
For any intersection that had no vertical curves, a unique grade, GRADEl, was reported. 

Grades were measured in one of two ways. An optical level and a measuring rod were sometimes 
used. A distance of25 feet (7.6 meters) or so would be paced off along the edge of the traveled way. 
A marked height at that distance would be compared with the corresponding height on a measuring 
rod determined by sighting the optical level horizontally. The difference in height divided by the 
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horizontal distance yields the slope. An alternative method was to place a 4-foot ( 1.2-meter) level 
along the roadway (or along a flat board on the roadway) and record the slope directly from a 
display. 

Other Variables 

Posted advisory and regulatory speeds were recorded for each leg when seen within a few thousand 
feet, existence oflighting at the intersection was noted, and a qualitative measure of terrain (flat, 
rolling, or mountainous) was also noted. At signalized intersections, it was noted whether the signal 
appeared to be pre-timed, actuated, or semi-actuated. Protected left turns on the major road were 
also noted, but no record was made of which pairs of legs had such protection. A reasonable 
assumption is that the left-tum movement from the major road leg with the highest volume, either 
leg 1 to leg 3 or leg 2 to leg 4, had such protection when PROT _LT equals 1 and no left turns were 
protected when PROT_LT equals 0. 

DATA LIMITATIONS 

HSIS Data 

The HSIS variables are ADT and crash data for the years 1993, 1994, and 1995. 

California ADT data are determined systematically and regularly on State roads through 400 
permanent continuous operation count stations and another 1, 700 permanent stations that are used 
once every 3 years. Intersection major road ADT is based on the segment ADT. Minor road ADT 
is generally estimated rather than counted, is done by the Districts, and is thought to be older and 
of lesser quality. Michigan has about 120 permanent count stations, not all on State roads, and 
attempts to do counts on each State road once every 3 years. It does not have ADT for minor roads 
unless they are State roads. 

Crash data for both States are subject to the limitations noted in the study of Hakkert and Hauer 
(1988). Many Michigan property damage only crashes, and some injury crashes, are reported by the 
driver without an officer at the scene. Not only are there issues of underreporting and classification 
for both States, but there is also the question of crash location. Some Michigan observers think that 
crash locations are often incorrect, and mention examples where a crash was attributed not just to 
the wrong milepost, but to the wrong intersection. 

Field Data 

The traffic data collected in the field during this study have obvious limitations. They were collected 
on a single weekday in a particular season of the year and during a short time period in nominal peak 
morning and evening hours. Field workers reported that in different locations, the traffic volumes 
might be especially high early or late in the morning or evening, depending on such factors as the 
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presence of a manufacturing plant versus a shopping center nearby. The true definition of peak hour 
varies from location to location, while this study had to follow visitation timetables based on 
available resources. In California, some rural intersections had relatively low traffic, reflecting likely 
seasonal variations at resorts and camping areas such as Lake Tahoe. The site visits were conducted 
in late fall and early spring at some of these locations. No attempt was made to adjust the data to 
take into account such variability. Yet another limitation is that these data were collected in 1997 
for use in modeling 1993-1995 events. 

Variables such as HAZRAT, number of driveways, channelization, angle, speed limits, sight 
distances, and horizontal and vertical alignments were also measured in 1997 and are presumed to 
be valid for the earlier time period. These items, however, tend to be much more stable than traffic 
movements, and temporal variation is not thought to be a significant source of error. 

HAZRA T is a subjective rating of roadside hazards. The measure is supposed to average the hazards 
alongside the major road within ±250 feet (76 meters) of the intersection. Typically, two 
experienced observers will agree on a value or differ by 1, e.g., one observer may assign a 3 and the 
other a 2. 

Sight distances, as noted, were measured with a measuring wheel or a range finder. Because of the 
limitations of the range finder and some subjectivity about when an object becomes visible (seeing 
something versus recognizing what it is), sight distances are likely to be accurate to within roughly 
10%. For the purposes of this study, sight distances in excess of 1800 feet (550 meters) or more 
were not distinguished, and any sight distance thought to be in excess of 2000 feet ( 610 meters) was 
generally marked as 2000 feet. A sight distance of 1600 feet (488 meters) would be noticeably 
smaller, and absolute accuracy would improve as sight distances decrease. 

Horizontal and vertical curves present unique difficulties. For many rural roads, the line of a 
highway is quite irregular when examined on a small scale. Potholes, bumps, and other small 
irregularities due to the lay of the land or due to wear caused by traffic and weather are often present. 
Field workers were asked to idealize roadways by smoothing road lines out to scales of several 
vehicle lengths. Decisions about where a curve begins and ends are thus to some extent arbitrary, 
particularly for curves oflarge radius or small grade. Beginning points and endpoints as judged by 
two different observers might differ by as much as 20 feet ( 6 meters), while degree of curve might 
vary by 5% or more. Michigan was relatively flat, with many grades less than 1 %. Vertical grades 
ofless than 1 % were probably measured to no greater accuracy than ±0.25%, so that a grade listed 
as 0.5% might be 0.25% or 0.75%. A much larger grade, say 5%, would be accurate to within 
±0.5%. Differences in successive grades accompanying a vertical curve would have about the same 
accuracy since the observers would be sensitive to the change of grade. 

Perhaps the greatest limitation of the data is that they do not reflect the special circumstances of each 
intersection. When individuals are classified by such conventional (and imperfect) measures as age, 
height, weight, sex, IQ, race, etc., sometimes the most important and most relevant points are 
missed. Site visits reveal that the intersections in this study are quite diverse, with very individual 
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personalities. Significant items that would not appear in a data base are quite common, e.g., a 
nearby amusement park, beach tum-offs along Lake Huron, canyon roads off of Pacific coastal 
highways, sideroads into California deserts, resort areas such as Lake Tahoe and Squaw Valley, 
small towns where a two-lane road flares out to four lanes for a few thousand feet or where a two­
lane road abruptly arrives at a single signalized intersection, or rural intersections along heavily 
trafficked commuter highways connecting big cities to rural homesites. 

Signalized rural intersections, in particular, are in transition. The signal is often in place because of 
increasing local development and increased minor road traffic. With increasing traffic come more 
businesses and residences, and soon a very rural area becomes a small town and a small town 
becomes a city. 

Analysis and modeling are bound to be inexact because the population under study is a moving 
target, and qualitative changes can overtake the quantitative ones, bringing unforeseen variables into 
prommence. 
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4.ANALYSIS 

The analysis consists of developing a variety of new variables derived from the variables collected, 
determining the statistics for new and old variables singly and jointly, determining correlations 
between variables (especially between crash counts and other variables), and studying the chief 
relationships found. 

Of particular interest is the relationship between crash counts and traffic. Without question, average 
daily traffic (ADT) on all approaches is a significant (and usually the most significant) predictor of 
crashes. Not only does greater traffic imply greater numbers of crash-prone drivers, even with the 
percentage of crash-prone drivers assumed to be independent of traffic or increasing with traffic, but 
for multiple-vehicle crashes at intersections, an adequate amount of traffic is a necessary condition 
for a crash. 

Successive sections of this chapter treat new variables, univariate statistics, bivariate statistics and 
correlations, and the relationship between crash counts and traffic. 

NEW VARIABLES 

The chief classes of variables in this study are: crash variables, traffic variables, intersection 
geometric variables, roadside variables, alignment variables, and sight distances. The intersection 
geometric variables concern medians, channelization, and intersection angle. Alignment variables 
and sight distance variables, which pertain to the roadway as far out as 800 feet (244 meters) to 
several thousand feet from the intersection center, are treated separately. 

Crash Variables 

The chief crash variable is TOTACC. This is the total number of crashes occurring at the 
intersection in the years 1993, 1994, and 1995. Any crash occurring at the intersection or within 250 
feet (76 meters) of the intersection center along the major road is included in this number. Crashes 
occurring along the minor road near the intersection are recorded as being at the intersection (if 
within 100 feet (30.5 meters) of the intersection center in Michigan, if within 250 feet (76 meters) 
in California). One exception to this is when the minor road is a State road (the major road is always 
a State road). This happens for some signalized intersections. In such cases, Accident files for the 
minor road were also consulted and all crashes within 250 feet (76 meters) of the intersection center 
along the minor State road were included. 

A second crash variable is TOTACCI. For this variable, criteria proposed by Bellomo-McGee, Inc. 
(BMI) were used to restrict the crashes to ones considered intersection-related. Michigan's HSIS 
Accident file has a variable called Highway Area Type that indicates whether a crash occurred in the 
vicinity of an intersection. This perhaps could have been used to establish intersection-relatedness. 
However, California has no similar variable. Indeed, an important modeling issue is to establish 
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criteria for intersection-related crashes that are uniform from State to State. A set of criteria with 
this aim were prepared by Warren Hughes and A.J. Nedzesky of BMI, with the assistance of Forrest 
Council, and were submitted to FHW A in a memo dated March 26, 1998. The BMI criteria are the 
following: (1) crashes must occur within 250 feet (76 meters) of the intersection center and (2) they 
must be (a) vehicle-pedestrian crashes; (b) crashes in which one vehicle involved in the crash is 
making a left turn, right tum, or U-tum prior to the crash; or ( c) multiple-vehicle crashes in which 
the accident type is either sideswipe, rear end, or broadside/angle. 

Applying these criteria in California and Michigan was not completely straightforward. Minor road 
crashes could sometimes only be obtained out to a lesser distance, as noted above, because of the 
recording methods of the States. The California data base is silent on whether crashes, including 
turning crashes, may or may not involve driveways, while Michigan has separate categories for some 
crashes involving driveways (e.g., "angle driveway"). For accident type, California uses the term 
"broadside," while Michigan uses the terms "angle straight" and "angle tum." California does not 
distinguish between "sideswipe same" and "sideswipe opposite," whereas Michigan does. The 
precise criteria used in the two States, apart from location as specified in TOT ACC, were: 

or 

or 

or 

or 

or 

CALIFORNIA 

Some vehicle in the crash had MISCACTl (Motion preceding collision) equal to "making 
right tum," "making left turn," or "making U tum"; 

ACCTYPE (Type of collision) was "Auto-pedestrian"; 

VEH INVOL (Motor vehicles involved with) was "Pedestrian"; 

VEH _ INVOL was "Other motor vehicle" or "Motor vehicle on other roadway," and ACCTYPE 
was "Sideswipe" or "Rear end" or "Broadside." 

MICHIGAN 

ANAL YS (Accident analysis) was "Motor vehicle/motor vehicle," and ACCTYPE (Accident 
type) was "Head-on" or "Sideswipe opposite," and MISCACTl (Driver intent) for some vehicle 
in the crash was "Make right tum," "Make left tum," or "Make U tum"; 

ANAL YS was "Auto-pedestrian"; 

ANALYS was "Motor vehicle/motor vehicle," and ACCTYPE was "Angle straight," 
"Rear end," "Angle tum," "Sideswipe same," "Rear end left tum," "Rear end right tum," 
"Head-on left tum," "Dual left tum," or "Dual right tum." 

From these comparisons, it is evident that the problem of uniformity among States also arises when 
multiple data fields are used to ascertain whether an crash is intersection-related. The data fields 
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and associated definitions do not always match up precisely. 

Yet another problem is that the BMI criteria were developed for use with two-lane rural roads. The 
present study, in part, concerns four-lane rural roads and it is not clear that the same criteria should 
be used for them. Observers have also raised the issue of whether different criteria should be used 
for signalized versus non-signalized intersections of two-lane rural roads. 

Four other crash variables were developed for this study. Their definitions are given below: 

'NJACC = Aall accidents with fatalities, injuries, or possible injuries counted in TOTACC 

lNJACCI = All accidents with fatalities, injuries, or possible injuries counted in TOTACC 

TOTACCS = All single-vehicle accidents counted in TOTACC 

TOTACCM =All multiple-vehicle accidents counted in TOTACC 

The first two variables, INJACC and INJACCI, exclude crashes in which only property damage 
occurred, but include all others. In California, one of the severity categories is "Complaint of pain." 
In the time period 1993 through 1995, the reporting threshold for property damage only crashes was 
$400 in Michigan and $500 in California. The last two variables, TOTACCS and TOTACCM, were 
determined for the signalized intersections only, and were used in some of the modeling to relate 
crashes to traffic flows by leg. 

ADT Variables 

Two average daily traffic variables were used in this study - ADTl and ADT2. ADTl is estimated 
average daily two-way traffic on the major road measured in vehicles per day (vpd) in the vicinity 
of the intersection for the 3 years 1993, 1994, and 1995. ADT2 is the estimated average daily two­
way traffic for the minor road in this period. 

For California, ADTl and ADT2 were obtained by taking annual figures provided in the HSIS 
intersection files, summing them, and dividing by three. 

For Michigan, ADT data were not available in the HSIS intersection file. However, ADT data were 
available in the HSIS Roadlog file for State roads in the years 1992, 1994, and 1995. The values of 
ADT for these years were interpolated to obtain a value for the year 1993, and the values for 1993, 
1994, and 1995 were averaged. These estimated ADT values were for segments of roads. Then, 
ADT on segments of the major road adjacent to intersections in the study were averaged to yield 
ADTl. In some cases (about 20% of the Michigan intersections), the minor road was also a State 
road, and ADT2 could be obtained in the same way. In all other cases, ADT2 was estimated on the 
basis of morning and evening traffic counts done by Pragmatics, Inc. (see below). An average 
morning-hour traffic count (incoming plus outgoing) was determined for each leg, converted into 
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a fraction of all incoming and outgoing traffic; the same was done for evening traffic, and the two 
fractions were averaged. Then this fraction was applied to the known estimated ADT on the two 
legs of the major road to obtain an estimated ADT for each minor leg. ADT2 was this value ifthere 
was only one minor leg, and it was the average of the values for the two minor legs otherwise. This 
method has two evident defects: it only represents peak-hour ADT, and a sample of such at that, and 
it was done in the year 1997 rather than the study years. Nonetheless, it probably has the correct 
order of magnitude and may well be as reliable as other minor road ADT estimates in the HSIS files. 

In the case of the signalized intersections, the decision about which of two two-lane roads at a four­
legged intersection is major and which is minor was based on ADT. The one with the higher ADT 
is defined to be the major road, and the other the minor road. In general, the major road is the State 
road, but in Michigan, sometimes both roads are State roads and thus the ADT criterion is used to 
declare one of them to be the major road. There are three cases, two in Michigan and one in 
California, where the State road has a lower ADT than the other road, a county or local road. In 
these three cases, the other road is taken to be the major road, its ADT is ADTl, and its legs are 
taken to be legs 1 and 2. 

Variables Derived From Traffic Counts 

Traffic count data were converted into hourly form so that for each ordered pair of approaches (i,j), 
an estimated number of vehicles per hour was given traveling from leg i to leg j. This was calculated 
for passenger vehicles and trucks separately and for a morning and evening hour separately. 

M_PCij = RAWMPCij 

M HR 

M_TRij = RAWMTRij 

M HR 

E_PCij = RAWEPCij 

EHR 

E_TRij = RAWETRij 

EHR 

A rather large variety of variables can be derived from such quantities. For the present study, 
selected variables shown below were developed. 

Commercial or truck percentage was measured by three variables, AM%TRUCK, PM%TRUCK, 
and PK% TRUCK, representing the morning, evening, and combined morning and evening 
percentages of truck traffic passing through the intersection. These are defined as follows: 
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AM%TRUCK = 
Lau pairs (iJ) M_TRij x lOO 

Lau pairs (i,j) (M_TRij + M_PCij) 

PM%TRUCK = 
Lau pairs (i,j) E_TRij x lOO 

Lau pairs (iJ) (E_TRij + E_PCij) 

Lau pairs (iJ) (M_TRij + E_TRij) x 100 

""' 11 . /" ,1 (M TRii + M PCii + E TRii + E PC ii) 
La pairs 11.J/ - '.I - '.I - '.I - '.I 

PK%TRUCK = 

The sums are over all ordered pairs oflegs (i,j), i * j. Notice that PK%TRUCK is not necessarily 
the average of the other two variables. It is rather a weighted combination of the two, weighted by 
the fractions of the overall traffic in morning and evening, respectively. 

Turning percentages were calculated along the major road, the minor road, and combined by 
methods similar to the above. Define the auxiliary variables Mij and Eij by: 

Mij = M_PCij + M_TRij 

Eij = E_PCij + E_TRij 

summing passenger and commercial vehicle flows to get total vehicle flows. Then, the variables 
PK%TURN, PK%LEFT, PK%THRU1, PK%LEFT1, PK%THRU2, PK%LEFT2 are given by: 

PK%TURN = 
""' (M'· + Eij) 
Lau pairs (i,j) except (1,2),(2,1).(3,4), and (4,3) lj x 100 

""' (M .. + E"") 
Lau pairs (i,J) l) lj 

PK%LEFT = 
L .. - Mij + Eij 

(1J)-(1,3),(4,l).(2,4), or (3,4) X l OO 

""' (M .. + E"') 
Lau pairs (iJ) lj lj 
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L(iJ) =(1,2) or (2,1) (Mij + Eij) 
PK%THRUJ = x 100 

Lau pairs (i.j) with i =1 or 2 (M ij + Eij) 

L(i,j) =(1,3) or (2,4) (Mij + Eij) 
PK%LEFTJ = x 100 

Lau pairs (iJ) with i =/ or 2 (Mij + Eij) 

L(iJ) =(3,4) or (4,3) (Mij + Eij) 
PK%THRU2 = x 100 

Lau pairs (i,j) with i =3 or 4 (Mij + Eij) 

L(i,j) =(4,1) or (3,2) (Mij + Eij) 
PK%LEFT2 = x 100 

Lau pairs (iJ) with i=3 or 4 (Mij + Eij) 

In case the intersection is three-legged, traffic flows to and from one of legs 3 and 4 will always be 
zero and, in particular, PK% THRU2 is zero. Three more variables that might be considered are: 

PK%RIGHT = (PK%TURN - PK%THRU) 

PK%RIGHTJ = (100 - PK%LEFTJ - PK%THRUJ) 

PK%RIGHT2 = (100 - PK%LEFT2 - PK%THRU2) 

In connection with the modeling of the signalized intersections, variables were developed to estimate 
the incoming traffic on each leg. These variables were based on the ADT information and the peak­
hour traffic flows. They are: 

L=234(Mlj + Elj) ADTJ 
Fl = ') .. x 

1/2(Li=l,2 (Lj;<i (Mij + Eij + Mji + Eji))) 1000 

L·=134 (M2j + E2j) ADTJ 
F2 = ') . ' x 

112(Li=l,2 CLj-'i (Mij + Eij + Mji + Eji))) 1000 

F3 
L1 =1.2.4 (M3j + E3j) ADT2 

= x --
1/2(Li=3,4 (Lj-'i (Mij + Eij + Mji + Eji))) 1000 

F4 
Lj=/,2,3 (M4j + E4j) ADT2 

= x --
112c"Li=3.4 c"L1 .. i CMiJ + Eij + Mji + Eji))) 1000 
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where the units are thousands of vehicles per day and Fi is the estimated number of thousands of 
vehicles per day entering the intersection along leg number i (cf. Figure 1 ). Three other variables 
derived from the F/s were also considered: 

SUMF = F + F +F + F 
I 2 3 4 

The first variable PRODF ADJ is a variable representing the interaction of adjacent legs, the second 
PRODFOPP does the same for opposite legs, and the third SUMF is the sum of all the flows. 

Intersection Angle Variables 

An angle variable DEV, representing the average deviation from 90°, is defined by: 

langlel - 901 if intersection is three-legged with third leg left (leg 3) 

DEV= 
langle2 - 901 if intersection is three -legged with third leg right (leg 4) 

langlel - 901 +langle2 - 901 ;+ . . . fi l d --'------------ z1 intersection zs our - egge 
2 

Another angle variable considered in this study, suggested by E. Hauer, is HAU: 

HAU = 

angle2 - 90 if the third leg is to the right (leg 4) 
at a three -legged intersection 

90 - angle] if the third leg is to the left (leg 3) 
at a three -legged intersection 

angle2 - angle] 
-=-------'~- at a four -legged intersection 

2 

The variable HAU is a signed variable. See Figures 2 and 3. For a three-legged intersection with 
the angle to the right of the increasing direction, HAU is positive when the angle is larger than 90°, 
as in 2(a), and HAU is negative when the angle is smaller than 90°, as in 2(b). If the angle is to the 
left of the increasing direction (see Figure 3 ), 180 ° minus the angle becomes the new angle and 
HAU is defined as ((180 - angle) - 90) = (90 - angle), as above. For a four-legged intersection, as 
in 2(c), it is the average of the two three-legged values (and thus 90° cancels out). Figure 4 
illustrates the calculation of HAU in a variety of cases. Kulmala (1995) proposes that turns from the 
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Increasing 
Direction 

Leg 2 

Leg I 

angle2 
STOP 

(a) Three-legged intersection, 
angle larger than 90 ° 

Leg3 

Leg 4 

Leg 2 

I 

Leg I 

Increasing 
Direction 

t 

Leg 2 

~
2 

L<g4 

I 

Leg I 

(b) Three-legged intersection, 
angle smaller than 90° 

angle2 

Leg4 

Increasing 
Direction 

Ii'-

(c) Four-legged intersection 

FIGURE 2. Intersection Angle Geometries 
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For Three-Legged Intersections: 

Minor road to right of major road in direction of increasing mileposts: 

HAU= angle2 - so 
=135-SO 
= 45 

135° so• 

HAU = angle2 - so 
= so - so 
= 0 

Min or road to left of m ajar road in direction of increasing mileposts: 

so• 

HAU = SO - angle1 
= so - 80 
= 10 

For Four-Legged Intersections: 

(minor road not straight) 

HAU = (angle2 - angle1) I 2 
=(110-80)/2 
= 15 

so• 

HAU= SO - angle1 
= so - so 
= 0 

go• go• 

HAU = (angle2 - angle1) I 2 
= (go - SO) I 2 
= 0 

HAU= angle2 - SO 
= 60 - so 
= -30 

115° 

HAU =go - angle1 
=S0-115 
= -25 

HAU = (angle2 - angle1) I 2 
=(60-120)/2 
= -30 

FIGURE 3. Examples of Calculation of the Angle Variable HAU 
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far lane of the major road may be less crash prone in situation 2(a) than in situation 2(b), so that 
positive values of HAU correspond to fewer crashes. 

Sight Distances 

To represent sight distances for the modeling, reciprocals were chosen. Large values of the 
reciprocals corresponded to poor sight distances, and small ones corresponded to lengthy sight 
distances, and thus crashes might be expected to increase with increasing values of the reciprocals. 

-
1

- if intersection is three -legged with minor leg being leg 3 
SDI 

RSDI = - 1
- if intersection is three-legged with minor leg being leg 4 

SD2 

(-1 )(-1- 1 ) ;+ . . h fi l + -- zJ zntersectzon as our egs; 
2 SDI SD2 

-
1
- if intersection is three -legged with minor leg being leg 3 

SDL3 

RSDL2 = -
1
- if intersection is three-legged with minor leg being leg 4 

SDL4 

(_!_)(-
1
- + -

1
-) if intersection has four legs; 

2 SDL3 SDL4 

-
1
- if intersection is three-legged with minor leg being leg 3 

SDR3 

RSDR2 = -
1
- if intersection is three-legged with minor leg being leg 4 

SDR4 

(-1 )(--1 - 1 ) ;+ . • h fi l + -- ZJ zntersectzon as our egs; 
2 SDR3 SDR4 

RSDLI (-l )(--1- 1 ) ;+ . . h fi l = + -- ZJ zntersectzon as our egs; 
2 SDLJ SDL2 

RSD2 = (_!_)(-
1

- + -
1
-) for a four-legged signalized intersection. 

2 SD3 SD4 

The variables are RSDl, RSDL2, RSDR2, RSDLl, and RSD2. 
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Horizontal Alignment 

Variables used to represent composite horizontal curvature are the same as those used by Vogt and 
Bared (1998), except that 764 feet (233 meters) has been replaced by 800 feet (244 meters): 

Hl-1 = 
Number of horizontal curves overlapping intersection center ±250 feet 

HEI-1 
L.DEGHj 

1 = 
Number of horizontal curves overlapping intersection center ±800 feet 

where the sum is over the corresponding curves along the major road. HI-I and HEI-1 (E for 
extended) are the unweighted averages of the degrees of curvature of the corresponding curves. 
Similar quantities for the minor road, in the case of signalized intersections, are denoted by HI-2 and 
HEI-2. These are combined with the major road variables to generate two more variables HI COM 
andHEICOM: 

HICOM = (_!_)(HI-1 + HI-2) 
2 

HEICOM = (_!_)(HEI-1 + HEI-2) 
2 

to be used in the modeling of the signalized intersections. 

Vertical Alignment 

Vertical alignment variables likewise are taken from Vogt and Bared (1998). 

A basic variable associated with each vertical curve is Vi: 

V. = 
l 

IGBi - GEil 

length Li of i-th vertical curve in hundreds of feet 

with units of percent per 100 feet (30.5 meters), where the numerator is the absolute change of grade 
~gi = jGBi - GEij and Li = (VEi - VBi)/100. 
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!-------------! 

Length Li of 
i-th curve 

GEi 

FIGURE 4. Vertical Curve 

Four vertical variables V CI-1, V CEI-1, VI-1, and VEI-1 were considered: 

VCJ-I = 

VCEJ-I = 

VJ-I = 

VEJ-I = 

Number of vertical crest curves overlapping intersection center ±250 feet 

Li Vi 

Number of vertical crest curves overlapping intersection center ±800 feet 

Li Vi 

Number of vertical curves overlapping intersection center ±250 feet 

Li Vi 

Number of vertical curves overlapping intersection center ±800 feet 

These sums are over the stipulated vertical curves along the major road. For signalized intersections, 
similar variables with the suffix 2 rather than 1 were also employed for the minor road, as well as 
the combined variables VCICOM, VCEICOM, VICOM, and VEICOM: 

VCJCOM = ( _!_)(VCI-I + VCI-2) 
2 

VCEJCOM = (_!_)(VCEJ-I + VCEI-2) 
2 

VIC OM = (_!_)(VI-I + VI-2) 
2 

VE/COM = (_!_)(VEI-1 + VEI-2) 
2 

Recall that crest curves are vertical curves for which the grade decreases (positive to negative, 
positive to less positive, negative to more negative). 
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Another variable developed pertaining to vertical alignment is ABSGRD 1. If only one grade was 
seen on the major road, ABSGRD 1 was the absolute value of this grade. If more than one grade was 
seen in the vicinity of the intersection on the major road, absolute values were computed of all grades 
seen at the beginnings and endings of those vertical curves that overlapped the segment of the major 
road within ±800 feet (244 meters) of the intersection center. These absolute values were then 
averaged (e.g., if six grades occur corresponding to three vertical curves, their absolute values were 
summed and divided by six), without regard to where they occurred (in some cases more than 800 
feet (244 meters) from the intersection) or the distance for which the grade remained constant. A 
similar variable ABSGRD2 was also developed for the minor road of signalized intersections. 

Miscellaneous Variables 

Driveway variables were combined to yield NODRWYl as follows: 

NODRWYJ = NODRWYRJ + NODRWYCJ 

and a similar combination, NODRWY2, was used for minor road driveways at signalized 
intersections. 

Median widths varied between legs of the major road in 18 out of 84 three-legged intersections, 18 
out of72 four-legged intersections, and 1 out of 49 signalized intersections (most of the signalized 
intersections had no median). Thus, the median width variable here, MEDWIDTHl, is the average 
of the median widths of the two legs, leg 1 and leg 2, of the major road. 

Speed limit variables, SPD 1 and SPD2, with values in miles per hour were assigned to the major and 
minor road. On the major road, SPDl was the average of the posted speeds on Legs 1 and 2 or the 
unique value seen if a posted speed was seen on only one of these legs. The same rule was applied 
for the minor road to get SPD2. In some cases, no posted speed limit was seen on the leg or legs of 
the minor road. In this case, SPD2 was assigned the default value 35. 

During the modeling, it became convenient to introduce the channelization variable LTLNlS: 

if LTLNI is I or 2 
LTLNJS = 

0 if LTLNI is 0 

Yet another numerical variable was devised to denote the State: 
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0 if the intersection is in California 
STATE 

if the intersection is in Michigan 

The STATE variable can be used to study whether crash experience at the various intersections is 
due in part to differences between the States. Such factors as driver behavior and/or crash reporting 
practices may be significantly different between the two States. 

UNIVARIATE STATISTICS 

A summary of the data obtained is shown in Tables 5, 6, and 7. The first item that strikes the eye 
is that the mean number of crashes per intersection, no matter how they are measured, is highest at 
signalized intersections, moderate at four-legged ones, and lowest at three-legged ones. 

There are a number of other ways in which the intersection classes differ. The signalized 
intersections have much higher minor road ADT and much higher turning percentages than the other 
two classes. The signalized intersections tend to have more turning lanes on both major and minor 
legs, and lower speed limits on the major road as well as higher ones on the minor road. There is 
more lighting on the signalized intersection, a moderate amount on the four-legged intersection, and 
the least on the three-legged intersection. Likewise, the general terrain is flattest on the signalized 
intersection, less so on the four-legged intersection, and least on the three-legged intersection. This 
is due at least in part to the fact that two-thirds of the signalized intersections are in Michigan, while 
only 25% of the other intersections are, and Michigan is a relatively flat State. The three intersection 
classes are similar in other ways. Peak Truck Percentages at the three classes of intersections are 
from 9 to 11 % on average. There are two or three driveways per intersection on average, and the 
average value ofHAZRAT is from 2.2 to 2.5. Sight distances are comparable, except that signalized 
intersections have a lower average sight distance left on the minor road. The signalized intersections 
have even lower sight distances left on the major road than on the minor road. This suggests that 
woods, buildings, and other obstacles are not cleared away from the minor road to the extent that 
they are from the major road. 

Horizontal and vertical alignments are generally similar. Fewer of the signalized intersections, 
primarily in Michigan as mentioned, have horizontal curves and fewer have vertical curves. 
Although the average value ofHEI-1 varies substantially among the intersection classes, this average 
is strongly influenced by a few intersections with sharp turns. The average grade of signalized 
intersections is a bit lower than the average for the nonsignalized intersections, and the minor road 
has a higher average grade than the major road. This phenomenon was also noted in the three-legged 
and four-legged intersections, although no measurements were made. Frequently, the minor legs 
leading to an intersection on a four-lane road have fairly steep grades as they are brought up or down 
to conform with the level of the major road. 
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TABLE 5. Summary Statistics: 84 Three-Legged Rural Intersections 
Major road four-lane, minor leg stop-controlled, California and Michigan, 1993-1995 

Variable and Abbreviation Min. Max. Median Mean 

No. of Crashes TOTACC 0 19 2 3.88 

No. oflnjury Crashes INJACC 0 11 1 1.61 

No. of Intersection-Type Crashes TOTACCI 0 13 1 2.62 

No. of Intersection-Type Injury Crashes INJACCI 0 9 1 1.21 

Average Daily Traffic on Major Road ADTl, vpd 2,367 33,058 12,050 12,870 

Average Daily Traffic on Minor Road ADT2, vpd 15 3,001 349 596 

Peak Truck Percentage PK%TRUCK 1.18 28.16 7.79 9.15 

Peak Turning Percentage PK% TURN 0.26 53.09 4.28 6.68 

Peak Left-Tum Percentage PK%LEFT 0.13 25.97 2.16 3.29 

Peak Through Percentage on Major Road PK%THRU1 63.26 100.00 97.98 96.44 

Peak Left-Tum Percentage on Major Road PK%LEFT1 0.00 21.29 0.69 1.49 

Peak Left-Tum Percentage on Minor Leg PK%LEFT2 0.00 100.00 60.99 56.64 
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Freq. %Zero 

326 21.4 

220 (67.5%) 38.1 

135 (41.4%) 34.5 

102 (31.3%) 48.8 

13.1 

7.1 
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TABLE 5. Summary Statistics: 84 Three-Legged Rural Intersections (continued) 
Major road four-lane, minor leg stop-controlled, California and Michigan, 1993-1995 

Variable and Abbreviation Min. Max. Median Mean 

Roadside Hazard Rating HAZRA T 1 7 2 2.52 
1 
2 
3 
4 
5 
6 
7 

No. of Res. Driveways on Major Road NODRWYRl 0 7 0 1.17 

No. of Comm. Driveways on Major Road NODRWYCl 0 14 0 1.93 

No. of Driveways on Major Road NODRWYl 0 15 1 3.10 

Left-Tum Lane on Major Road L TLN 1 0 1 1 0.54 
O=no 
1 =yes 

Right-Tum Lane on Major Road RTLNI 0 I 0 0.19 
O=no 
I= yes 

Left-Tum Lane on Minor Road L TLN2 0 1 0 3.57 
O=no 
I= yes 

Right-Tum Lane on Minor Road RTLN2 0 1 0 11.90 
O=no 
I= yes 
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Freq. %Zero 

16 (19.0%) 
37 (44.0%) 
13 (15.5%) 
10 (11.9%) 
6 (7.1%) 
1 (1.2%) 
1 (1.2%) 

98 56.0 

162 57.1 

259 42.9 

46.4 
39 (46.4%) 
45 (53.6%) 

81.0 
68 (81.0%) 
16 (19.0%) 

96.4 
81 (96.4%) 
3 (3.6%) 

88.l 
74 (88.1%) 
10 (11.9%) 



TABLE 5. Summary Statistics: 84 Three-Legged Rural Intersections (continued) 
Major road four-lane, minor leg stop-controlled, California and Michigan, 1993-1995 

Variable and Abbreviation Min. Max. Median Mean 

Median Width on Major Road MEDWIDTHl, feet 0 36 0 3.74 

Median Type on Major Road MEDTYPE 
No Median 
Painted 
Curbed 

Other (Guardrail, Mixed, etc.) 

Angle Variable HAU, degrees -45 55 0 -0.36 

Longitudinal Sight Distance on Major Road SDl, feet 500 2000+ 2000+ 1543+ 

Left-Side Sight Distance on Minor Road SDL2, feet 45 2000+ 1470 1399+ 

Right-Side Sight Distance on Minor Road SDR2, feet 80 2000+ 1375 1388+ 

Degree of Curve HEI-1= (1/n)l: DEGHi, deg/100 ft 0 26.6 0 2.47 

Curve Grade Rate VEI-1= (1/m)l, (l~gil/Li), %/100 ft 0 6.71 0.04 0.89 

Crest Grade Rate VCEI-1 = (1/m)l, (l~gilfLi), %/100 ft 0 11.0 0 0.65 

Average Absolute Grade on Major Road ABSGRD 1, % 0 5.85 0.65 1.11 

1 ft= 0.305 m 
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Freq. %Zero 

53.6 

45 (53.6%) 
23 (27.4%) 

9 (10.7%) 
7 (8.3%) 

83.3 

52.4 

50.0 

59.5 

25.0 



TABLE 5. Summary Statistics: 84 Three-Legged Rural Intersections (continued) 
Major road four-lane, minor leg stop-controlled, California and Michigan, 1993-1995 

Variable and Abbreviation Min. Max. Median Mean Freq. 

Speed Limit on Major Road SPD 1, mph 30 65 55 50.4 

Speed Limit on Minor Road SPD2, mph 15 35 35 31.5 

Light at Intersection LIGHT O=no 52 (61.9%) 
1 =yes 32 (38.1 %) 

Terrain Flat 48(57.1%) 
Rolling 29 (34.5%) 
Mountainous 7 (8.3%) 

STATE O=CA 60 (71.4%) 
1 =MI 24 (28.6%) 

1mph=1.61 km/h 
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TABLE 6. Summary Statistics: 72 Four-Legged Rural Intersections 
Major road four-lane, minor legs stop-controlled, California and Michigan, 1993-1995 

Variable and Abbreviation Min. Max. Median Mean Freq. %Zero 

No. of Crashes TOTACC 0 38 3.5 5.53 398 12.5 

No. oflnjury Crashes INJACC 0 20 2 2.64 190 (47.7%) 25.0 

No. of Intersection-Type Crashes TOTACCI 0 27 2 4.13 297 (74.6%) 22.2 

No. oflntersection-Type Injury Crashes INJACCI 0 19 1 2.19 158 (39.7%) 36.1 

Average Daily Traffic on Major Road ADTl, vpd 3,350 73,000 11,166 13,018 

Average Daily Traffic on Minor Road ADT2, vpd 21 2,018 410 559 

Peak Truck Percentage PK% TRUCK 1.70 37.24 8.36 10.95 

Peak Turning Percentage PK%TURN 0.00 48.52 6.56 9.47 2.8 

Peak Left-Tum Percentage PK%LEFT 0.00 25.26 6.56 9.47 2.8 

Peak Through Percentage on Major Road PK%THRU1 67.77 100.0 96.51 94.41 

Peak Left-Tum Percentage on Major Road PK%LEFT1 0.00 13.96 1.51 2.78 5.6 

Peak Through Percentage on Minor Road PK%THRU2 0.00 68.1 12.0 16.37 17.1 

Peak Left-Tum Percentage on Minor Road PK%LEFT2 0.00 100.00 37.5 40.58 5.7 
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TABLE 6. Summary Statistics: 72 Four-Legged Rural Intersections (continued) 
Major road four-lane, minor legs stop-controlled, California and Michigan, 1993-1995 

-

Variable and Abbreviation Min. Max. Median Mean 

Roadside Hazard Rating HAZRA T 1 6 2 2.19 
1 
2 
3 
4 
5 
6 

No. of Res. Driveways on Major Road NODRWYRl 0 7 0 1.04 

No. of Comm. Driveways on Major Road NODRWYCl 0 12 0 0.88 

Number of Driveways on Major Road NODRWYl 0 15 0 1.92 

Left-Turn Lanes on Major Road LTLNl 0 2 2 1.33 
0 
1 
2 

Right-Turn Lanes on Major Road RTLNl 0 2 0 0.65 
0 
1 
2 

Left-Turn Lanes on Minor Road L TLN2 0 I 0 0.028 
0 
1 
2 

Right-Tum Lanes on Minor Road RTLN2 0 2 0 0.61 
0 
1 
2 
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Freq. %Zero 

21 (29.2%) 
29 (40.3%) 
12 (16.7%) 
8(11.1%) 
1 (1.4%) 
1 (1.4%) 

75 66.7 

63 66.7 

138 54.2 

30.6 
22 (30.6%) 

4 (5.5%) 
46 (63.9%) 

62.5 
45 (62.5%) 

7 (9.7%) 
20 (27.8%) 

97.2 
70 (97.2%) 

2 (2.8%) 
0 (0.0%) 

62.5 
45 (62.5%) 
IO (13.9%) 
17 (23.6%) 



TABLE 6. Summary Statistics: 72 Four-Legged Rural Intersections (continued) 
Major road four-lane, minor legs stop-controlled, California and Michigan, 1993-1995 

Variable and Abbreviation Min. Max. Median Mean 

Median Width on Major Road MEDWIDTHl, feet 0 36 2 3.78 

Median Type on Major Road MEDTYPE 
No Median 

Painted 
Curbed 
Other 

Angle Variable HAU, degrees -20 30 0 0.868 

Longitudinal Sight Distance on Major Road SDl, feet 400 2000+ 1500 1430+ 

Left-Side Sight Distance on Minor Road SDL2, feet 324 2000+ 1438 1358+ 

Right-Side Sight Distance on Minor Road SDR2, feet 215 2000+ 1430 1377+ 

Degree of Curve HEI-1 = (1/n)I, DEGHi, deg/100 ft 0 233.3 0 5.01 

Curve Grade Rate VEl-1 = (1/m)I, (l~gil/Li), %/100 ft 0 12.5 0 0.70 

Crest Grade Rate VCEI-1 = (1/m)I, (l~gilfLi), %1100 ft 0 12.5 0 0.50 

Average Absolute Grade on Major Road ABSGRD 1, % 0 5.8 0.4 0.98 

1 ft= 0.305 m 
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Freq. %Zero 

43.l 

31 (43.1%) 
17 (23.l %) 
22 (30.6%) 
2 (2.8%) 

77.8 

56.9 

61.1 

75.0 

38.9 



TABLE 6. Summary Statistics: 72 Four-Legged Rural Intersections (continued) 
Major road four-lane, minor legs stop-controlled, California and Michigan, 1993-1995 

Variable and Abbreviation Min. Max. Median Mean 

Speed Limit on Major Road SPDl, mph 25 65 55 53.68 

Speed Limit on Minor Road SPD2, mph 25 50 35 33.35 

Light at Intersection LIGHT O=no 
1 =yes 

Terrain Flat 
Rolling 
Mountainous 

STATE O=CA 
1 =MI 

1mph=1.61 km/h 

60 

Freq. %Zero 

40 (55.6%) 
32 (44.4%) 

··-·" 

49 (68.1%) ' 
14 (19.4%) 
9 (12.5%) 

54 (75.0%) 
18 (25.0%) 



TABLE 7. Summary Statistics: 49 Signalized Rural Intersections 
Four-legged intersections of two-lane roads, California and Michigan, 1993-1995 

Variable and Abbreviation Min. Max. Median Mean 

No. of Crashes TOTACC 2 48 21 20.8 

No. oflnjury Crashes INJACC 0 25 7 7.47 

No. of Intersection-Type Crashes TOT ACCI 1 37 17 16.1 

No. of Intersection-Type Injury Crashes INJACCI 0 21 6 6.14 

Average Daily Traffic on Major Road ADTl, vpd 4,917 25,133 8,900 10,491 

Average Daily Traffic on Minor Road ADT2, vpd 940 12,478 3,670 4,367 

Peak Truck Percentage PK% TRUCK 2.69 45.43 7.71 8.96 

Peak Turning Percentage PK% TURN 7.07 72.66 34.48 35.64 

Peak Left-Tum Percentage PK%LEFT 4.20 37.07 17.97 18.17 

Peak Through Percentage on Major Road PK%THRU1 18.01 96.73 73.77 71.19 

Peak Left-Tum Percentage on Major Road PK%LEFT1 1.78 36.67 12.99 14.71 

Peak Through Percentage on Minor Road PK%THRU2 8.45 84.09 41.97 43.90 

Peak Left-Tum Percentage on Minor Road PK%LEFT2 2.50 75.73 24.88 28.69 
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Freq. %Zero 

1017 0.0 

366 (36.0%) 4.1 

790 (77.7%) 0.0 

301 (29.6%) 4.1 



TABLE 7. Summary Statistics: 49 Signalized Rural Intersections (continued) 
Four-legged intersections of two-lane roads, California and Michigan, 1993-1995 

Variable and Abbreviation Min. Max. Median Mean 

Roadside Hazard Rating HAZRA T 1 6 2 2.35 
1 
2 
3 
4 
5 
6 

No. of Res. Driveways on Major Road NODRWYRl 0 6 0 0.67 

No. of Comm. Driveways on Major Road NODRWYCl 0 11 2 2.35 

No. of Driveways on Major Road NODRWYl 0 15 3 3.02 

No. of Res. Driveways on Minor Road NODRWYR2 0 8 0 0.94 

No. of Comm. Driveways on Minor Road NODRWYC2 0 11 3 2.24 

No. of Driveways on Minor Road NODRWY2 0 11 3 3.18 

Left-Tum Lanes on Major Road LTLNl 0 2 2 1.69 
0 
1 
2 

Right-Tum Lanes on Major Road RTLNl 0 2 1 0.98 
0 
1 
2 
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Freq. %Zero 

10 (20.4%) 
20 (40.8%) 
14 (28.6%) 

3 (6.1%) 
1 (2.0%) 
1 (2.0%) 

33 71.4 

115 32.7 

148 28.6 

46 65.3 

110 22.4 

156 12.2 

14.3 
7 (14.3%) 
1 (2.0%) 

41 (83.7%) 

42.9 
21 (42.9%) 
8 (16.3%) 

20 (40.8%) 



TABLE 7. Summary Statistics: 49 Signalized Rural Intersections (continued) 
Four-legged intersections of two-lane roads, California and Michigan, 1993-1995 

Variable and Abbreviation Min. Max. Median I Mean 

Left-Tum Lanes on Minor Road LTLN2 0 2 2 1.24 
0 
1 
2 

Right-Tum Lanes on Minor Road RTLN2 0 2 0 0.73 
0 
1 
2 

Median Width on Major Road MEDWIDTHl, feet 0 6.5 0 0.58 

Median Type on Major Road MEDTYPE 
No Median 
Painted 
Mixed 

Angle variable HAU, degrees -45 40 0 0.102 

Longitudinal Sight Distance on Major Road SDI, feet 267 2000+ 1538 1454+ 

Left-Side Sight Distance on Major Road SDL 1, feet 186 2000+ 612 833+ 

Longitudinal Sight Distance on Minor Road SD2, feet 390 2000+ 1333 1406+ 

Left-Side Sight Distance on Minor Road SDL2, feet 253 2000+ 825 1007+ 

1 ft = 0.305 rn 
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Freq. %Zero 

34.7 
17 (34.7%) 
3(6.1%) 

29 (59.2%) 

53.l 
26 (53.1 %) 
10 (20.4%) 
13 (26.5%) 

87.8 

43 (87.8%) 
1 (2.0%) 
5 (10.2%) 

67.35 



TABLE 7. Summary Statistics: 49 Signalized Rural Intersections (continued) 
Four-legged intersections of two-lane roads, California and Michigan, 1993-1995 

Variable and Abbreviation Min. Max. Median Mean 

Degree of Curve HEJ-1= (l/n)I DEGi, deg/100 ft 0 94.9 0 4.61 

Curve Grade Rate VEI-1= (l/m)L, (idgil/Li), %/100 ft 0 5.98 0.67 1.26 

Crest Grade Rate VCEI-1= (l/m)L, (ldgil/Li), %/100 ft 0 6.88 0 1.01 

Degree of Curve HEI-2 = (1/n)L DEGHi, deg/100 ft 0 36.41 0 2.27 

Curve Grade Rate VEI-2 = (l/m)[ (ldgil/Li), %/100 ft 0 11.97 1.35 2.24 

Crest Grade Rate VCEI-2 = (I /m)L (ldgil/Li), %/I 00 ft 0 12.13 I 1.88 

Average Absolute Grade on Major Road ABSGRDl, % 0 3.45 0.73 0.83 

Average Absolute Grade on Minor Road ABSGRD2, % 0 5.3 0.71 1.00 

Speed Limit on Major Road SPDl, mph 30 65 55 48.7 

Speed Limit on Minor Road SPD2, mph 25 55 45 43.8 

Protected Left Tum PROT _LT O=no 
1 =yes 

Signal Type SIG_ TYPE Pre-Timed 
Actuated 
Semi-Actuated 

Light at Intersection LIGHT O=no 
I= yes 

Terrain Flat 
Rolling 
Mountainous 

STATE O=CA 
I =MI 

1 ft= 0.305 m, I mph= 1.61 km/h 
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Freq. %Zero 

57.1 

38.8 

51.0 

73.57 

24.5 

32.7 

28.6 

18.4 

28 (57.1%) 57.I 
21 (42.9%) 

22 (44.9%) 
21 (42.9%) 
6 (12.2%) 

10 (20.4%) 
39 (79.6%) 

36 (73.5%) 
11 (22.4%) 

2(4.1%) 

18 (36.7%) 
31 (63.3%) 



Crash Data Versus Intersection Class and State 

Table 8 is an extract from Tables 5, 6, and 7, comparing the mean number of crashes per intersection 
for the three intersection classes. It indicates that four-legged intersections have from 1.42 to 1.81 
times as many crashes as three-legged intersections. The higher ratio comes into effect as the crash 
severity and the intersection-relatedness increase. This is consistent with the rough rule of thumb 

TABLE 8. Mean Number of Crashes per Intersection by Crash Variable and Intersection 
Class 

three-legged four-legged signalized 

TOTACC 3.88 5.53= l.42x3.88 20.8=3.76x5.53 

TOTACCI 2.62 4.13=1.58x2.62 16.1=3.90x4.13 

INJACC 1.61 2.64=1.64xl.61 7.47=2.83x2.64 

INJACCI 1.21 2.19=1.8Ixl.21 6.14=2.80x2.19 

that a four-legged intersection behaves like a pair of three-legged intersections, with a consequent 
crash ratio of 2. Note that average major and minor road ADT's, ADTl and ADT2, in Tables 5 and 
6 for three-legged and four-legged intersections, respectively, are very nearly equal, and thus that 
the comparison of three-legged and four-legged intersections is justifiable. 

With regard to the signalized intersections, Table 8 indicates that they have from 3.90 to 2.80 times 
as many crashes as four-legged intersections. These two intersection classes have in common four­
leggedness, but otherwise are quite different (lanes, control, and ADT). Nonetheless, it appears that 
intersection-relatedness, i.e., all crashes versus those satisfying the BMI criteria (seep. 40), has a 
negligible effect on the crash ratio, but that the :fraction of serious crashes is lower at signalized 
intersections than it is at the four-legged intersections. 

Table 9 provides a decomposition of crashes by severity and State for the three intersection classes. 
With respect to State, it indicates that Michigan crashes tend to be less severe than California crashes 
for all classes, regardless of intersection-relatedness. Regardless of State, signalized intersections 
have the lowest percentage of serious crashes and four-legged intersections have the highest 
percentage. Intersection-related crashes (TOTACCI) have a slightly higher tendency to be serious 
than all crashes (TOT ACC) for both States and all three intersection classes. 

The data in Table 9 are represented in another way in Table 10. Table 10 indicates that California 
is underrepresented in crashes in both the four-legged and signalized intersection samples and partly 
underrepresented in the three-legged intersection sample. It also shows that such under­
representation decreases for serious crashes and that for the three-legged intersections, California 
is overrepresented in serious crashes. The modeling later in this report will attempt to sort out 
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whether the dependence on STATE reflects a difference in highway variables between the States. 

TABLE 9. Total Number of Crashes by Severity, State, and Intersection Class 

TOTACC TOTACCI 

CA Three-legged MI CA Three-legged MI 

Property damage only 106 (50.7%) 85 (72.6%) 73 (47.7%) 45 (67.2%) 

Injury 101 (48.3%) 32 (27.4%) 78 (51.0%) 22 (32.8%) 

Fatal 2 (1.0%) 0 2 (1.3%) 0 

Total 209 117 153 67 

CA Four-legged MI CA Four-legged MI 

Property damage only 95 (41.5%) 113 (66.9%) 73 (38.6%) 66 (61. I%) 

Injury 129 (56.3%) 55 (32.5%) 112 (59.3%) 41 (38.0%) 

Fatal 5 (2.2%) 1 (0.6%) 4 (2.1%) 1 (0.9%) 

Total 229 169 189 108 

CA Signalized MI CA Signalized MI 

Property damage only 159 (58.2%) 492 (66.1%) 143 (57.4%) 346 (64.0%) 

Injury 112 (41.0%) 247 (33.2%) 104 (41.8%) 190(35.1%) 

Fatal 2 (0.7%) 5 (0.7%) 2 (0.8%) 5 (0.9%) 

Total 273 744 249 541 

TABLE 10. Percentage oflntersections and Crashes in California for Each Intersection Class 

% of int. %of TOTACC % ofTOTACCI %ofINJACC % ofINJACCI 

3-legged 72 64.1 69.5 76.3 78.4 

4-legged 75 57.5 63.6 70.5 72 

Signalized 36.7 26.8 31.5 31.1 35.2 
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BIVARIATE STATISTICS 

To prepare for model development, it is appropriate to ask what variables correlate strongly with 
crash counts and to note the mutual correlations of highway variables with one another. 

In the tables that follow, correlation coefficients between variables are shown, along with P-values, 
for each of the three data sets. Recall that the P-value is the estimated probability that the measured 
correlation coefficient would be at least as far from 0 as it is found to be if the true correlation 
coefficient for the population from which the sample is drawn is zero. A small P-value indicates that 
a correlation is significant, a large one indicates that no particular significance can be attached to it. 
The correlation coefficient summarizes the sample: if it is positive, the variables compared tend to 
increase together in the sample; if it is negative, they tend to decrease together. If the correlation 
coefficient is far from zero and its P-value is small, the sample is unlikely to have been drawn from 
a population where the true correlation is zero; ifthe correlation coefficient is close to zero and its 
P-value is large, the sample resembles a sample drawn randomly from a population whose overall 
correlation coefficient is zero. 

Other cautions should be offered in the interpretation of correlation coefficients. If a variable 
correlates strongly with, say, number of crashes, it may be that the variable is not in itself influential, 
but that it happens to correlate strongly with another variable that is influential. Likewise, if a 
variable seems to have a weak correlation with the number of crashes, it may be in part because the 
influence of the variable is masked by the presence of other more influential variables. The point 
of modeling is to determine the leading influences and then discover secondary influences, e.g., 
crashes may be strongly dependent on ADT, but after ADT is properly taken into account, the 
residual, the portion of crash count that cannot be expressed in terms of ADT, may be strongly 
correlated with another variable. 

Crashes Versus Other Variables 

Tables 11, 12, and 13 exhibit correlation coefficients and P-values between crash counts and other 
variables for the three data sets. 

Table 11 exhibits the correlations between intersection crashes and highway variables for the three­
legged intersections. Major and minor road ADT's correlate positively with crashes, as expected. 
Peak turning percentages also correlate with crashes, both positively and negatively. Since these 
turning percentages correlate with each other, it is not immediately clear what the chief influences 
are. While HAZRAT is insignificant, number of driveways correlates positively with crashes and 
median width correlates negatively; neither result is unexpected. The angle variables HAU and DEV 
are both significant, with HAU more so than DEV. The sign, however, is not what the Kulmala 
(1995) study suggests, but it is consistent with the work of Vogt and Bared (1998) for three-legged 
intersections. Sight distance is not significant, although minor road sight distance left is marginally 
significant. Both left and right turns from the minor road are affected by sight distance left. The 
horizontal variable HEI-1 and the vertical variables VI-1 and VEI-1 are significant. LIGHT and 
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TABLE 11. Correlation Coefficients and P-Values for Crashes Versus Other Variables, 
Three-Legged Intersections 

84 rural intersections, major road 4-lane, minor leg stop-controlled, CA and MI, 1993-95 

Highway Variable TOTACC INJACC TOTACCI INJACCI 

Corr. P-value Corr. P-value Corr. P-value Corr. P-value 

ADTl 0.3623 0.0007 0.3383 0.0016 0.3810 0.0003 0.3223 0.0028 

ADT2 0.5009 0.0001 0.3780 0.0004 0.5007 0.0001 0.4315 0.0001 

PK%TRUCK -0.2502 0.0217 -0.1540 0.1620 -0.2662 0.0144 -0.1596 0.1470 

PK%TURN 0.2574 0.0181 0.2362 0.0305 0.3113 0.0039 0.2811 0.0096 

PK%LEFT 0.2323 0.0335 0.2142 0.0504 0.2834 0.0090 0.2574 0.0181 

PK%THRU1 -0.2170 0.0474 -0.1745 0.1123 -0.2819 0.0094 -0.2242 0.0403 

PK%LEFT1 0.2786 0.0103 0.2612 0.0164 0.3098 0.0041 0.2884 0.0078 

PK%LEFT2 -0.2096 0.0588 -0.1628 0.1440 -0.1900 0.0873 -0.1446 0.1950 

HAZRAT -0.0720 0.5150 0.0449 0.6850 -0.0419 0.7050 0.0595 0.5907 

NODRWYl 0.3888 0.0003 0.1591 0.1484 0.4132 0.0001 0.1876 0.0874 

LTLNl -0.1753 0.1106 0.0190 0.8635 -0.1347 0.2218 -0.0086 0.9382 

RTLNl -0.1203 0.2757 0.0041 0.9704 -0.0717 0.5168 -0.0242 0.8267 

LTLN2 0.1691 0.1241 0.1579 0.1515 0.1563 0.1556 0.1564 0.1553 

RTLN2 0.1552 0.1586 0.1210 0.2728 0.1519 0.1677 0.1411 0.2005 

MEDWIDTHl -0.2557 0.0189 -0.1252 0.2566 -0.2259 0.0388 -0.1223 0.2679 

HAU 0.2871 0.0081 0.3817 0.0003 0.2265 0.0383 0.3753 0.0004 

DEV 0.1743 0.1127 0.2422 0.0264 0.1332 0.2269 0.2401 0.0278 

RSDl 0.0775 0.4836 0.0778 0.4818 0.1126 0.3079 0.0736 0.5061 

RSDL2 0.1597 0.1467 0.1264 0.2520 0.0908 0.4116 0.1143 0.3006 

RSDR2 0.0684 0.5366 0.1006 0.3625 0.0626 0.5717 0.0861 0.4361 

68 



TABLE 11. Correlation Coefficients and P-Values for Crashes Versus Other Variables, 
Three-Legged Intersections (continued) 

84 rural intersections, major road 4-lane, minor leg stop-controlled, CA and MI, 1993-95 

Highway Variable TOTA CC INJACC TOTACCI INJACCI 

Corr. P-value Corr. P-value Corr. P-value Corr. P-value 

HI-1 0.0552 0.6181 0.0834 0.4507 0.0489 0.6590 0.0753 0.4958 

HEI-1 0.2366 0.0303 0.1786 0.1041 0.1946 0.0761 0.1676 0.1275 

VI-1 0.1742 0.1131 0.1614 0.1426 0.2437 0.0255 0.2287 0.0364 

VEI-1 0.1673 0.1283 0.1530 0.1647 0.2208 0.0436 0.2060 0.0601 

VCI-1 0.0251 0.8210 0.0513 0.6429 0.0637 0.5647 0.0676 0.5410 

VCEl-1 0.1321 0.2308 0.1234 0.2633 0.1774 0.1065 0.1922 0.0799 

ABSGRDl 0.0099 0.9288 0.1158 0.2942 0.0492 0.6567 0.0931 0.3997 

SPDI -0.3688 0.0006 -0.1314 0.2334 -0.3509 0.0011 -0.1591 0.1483 

SPD2 -0.1133 0.3047 0.0174 0.8753 -0.0208 0.8513 0.0664 0.5483 

LIGHT 0.3290 0.0022 0.2163 0.0481 0.3242 0.0026 0.2078 0.0579 

STATE 0.1459 0.1853 -0.0823 0.4568 0.0327 0.7680 -0.1054 0.3402 

major road speed (SPDl) correlate positively and negatively, respectively, with crashes, but they also 
correlate positively and negatively, respectively, with minor road ADT (cf. Table 15), and this 
may be an example of one variable representing another. The same applies to Peak Truck 
Percentage, which correlates negatively with both crashes and ADT (Tables 11 and 15). The 
variable STATE does not seem to play an important role in three-legged intersection crashes. 

In Table 12, similar correlations are found between crashes on four-legged intersections and highway 
variables. ADTl is a bit less significant than in the three-legged case. Peak turning percentages 
correlate with crashes, but the minor road turning percentages are less significant. HAZRA T 
remains insignificant, but now it is joined by number of driveways and median width, which are also 
insignificant. The typical Hazard Rating and number of driveways at four-legged intersections are 
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TABLE 12. Correlation Coefficients and P-Values for Crashes Versus Other Variables, 
Four-Legged Intersections 

72 rural intersections, major road 4-lane, minor legs stop-controlled, CA and MI, 1993-95 

Highway Variable TOTACC INJACC TOTA CCI INJACCI 

Corr. P-value Corr. P-value Corr. P-value Corr. P-value 

ADTl 0.1519 0.2027 0.3088 0.0083 0.1642 0.1682 0.2705 0.0216 

ADT2 0.4801 0.0001 0.3123 0.0076 0.4612 0.0001 0.2945 0.0120 

PK%TRUCK -0.3035 0.0096 -0.3154 0.0070 -0.2932 0.0124 -0.3003 0.0104 

PK%TURN 0.3225 0.0057 0.1651 0.1659 0.3400 0.0035 0.1810 0.1282 

PK%LEFT 0.3117 0.0077 0.1598 0.1799 0.3258 0.0052 0.1745 0.1426 

PK%THRU1 -0.3022 0.0099 -0.1457 0.2219 -0.3263 0.0052 -0.1647 0.1668 

PK%LEFT1 0.3532 0.0023 0.2020 0.0889 0.3794 0.0010 0.2190 0.0645 

PK%THRU2 0.1688 0.1625 0.0813 0.5033 0.2013 0.0948 0.1081 0.3729 

PK%LEFT2 -0.1021 0.4003 -0.0883 0.4674 -0.1088 0.3702 -0.0961 0.4288 

HAZRAT -0.1663 0.1628 -0.1452 0.2237 -0.1367 0.2521 -0.1294 0.2789 

NODRWYl 0.1780 0.1346 0.0389 0.7455 0.1702 0.1528 0.0132 0.9121 

LTLNl -0.2904 0.0133 -0.0662 0.5809 -0.1828 0.1244 -0.0127 0.9156 

RTLNl -0.1910 0.1080 -0.0525 0.6612 -0.1352 0.2574 -0.0450 0.7076 

LTLN2 0.1689 0.1562 0.1723 0.1478 0.2181 0.0657 0.2016 0.0895 

RTLN2 -0.0998 0.4042 -0.0056 0.9631 -0.1006 0.4007 -0.0132 0.9124 

MEDWIDTHl -0.1579 0.1852 0.0102 0.9324 -0.1172 0.3270 0.0289 0.8093 

HAU 0.0101 0.9330 -0.0572 0.6333 -0.0413 0.7307 -0.0940 0.4320 

DEV 0.0599 0.6174 0.1381 0.2473 0.0416 0.7289 0.1117 0.3500 

RSDl 0.0884 0.4604 0.0095 0.9369 0.0619 0.6054 0.0168 0.8889 

RSDL2 0.1278 0.2850 0.0110 0.9270 0.0846 0.4800 -0.0004 0.9971 

RSDR2 0.3314 0.0045 0.2060 0.0826 0.3420 0.0033 0.2068 0.0814 
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TABLE 12. Correlation Coefficients and P-Values for Crashes Versus Other Variables, 
Four-Legged Intersections (continued) 

72 rural intersections, major road 4-lane, minor legs stop-controlled, CA and MI, 1993-95 

Highway Variable TOTACC INJACC TOTACCI INJACCI 

Corr. P-value Corr. P-value Corr. P-value Corr. P-value 

Hl-1 0.0396 0.7411 -0.0740 0.5366 -0.0139 0.9081 -0.0487 0.6848 

HEI-1 -0.0423 0.7240 -0.0481 0.6880 -0.0829 0.4890 -0.0762 0.5249 

VI-I -0.0414 0.7298 0.0147 0.9025 -0.0453 0.7057 0.0081 0.9459 

VEI-1 -0.0087 0.9421 0.0096 0.9360 -0.0181 0.8804 0.0033 0.9781 

VCI-1 -0.0323 0.7879 -0.0018 0.9880 -0.0477 0.6908 -0.0041 0.9725 

VCEI-1 0.0281 0.8145 0.0330 0.7831 0.0075 0.9499 0.0125 0.9171 

ABSGRDl -0.0177 0.8826 -0.0332 0.7822 -0.0012 0.9918 -0.0140 0.9073 

SPDl -0.2753 0.0193 -0.0306 0.7988 -0.2477 0.0359 -0.0007 0.9957 

SPD2 -0.0778 0.5158 0.2541 0.0312 -0.0006 0.9963 0.2742 0.0197 

LIGHT 0.0393 0.7430 -0.0377 0.7533 -0.0105 0.9303 -0.0633 0.5976 

STATE 0.3441 0.0031 0.0827 0.4898 0.2032 0.0869 0.0251 0.8340 

slightly less than they are at three-legged intersections, and this perhaps is relevant. However, 
median width, on average, is as high at four-legged intersections as at three-legged intersections, 
with a lower percentage of zero medians at four-legged intersections. Four-legged geometries, 
perhaps, lessen the safety effect of medians. 

As with the three-legged intersections, major road turning lanes tend to decrease the number of 
crashes (or are insignificant for injury crashes), while minor road turning lanes increase the number 
of crashes or are insignificant. In the three-legged case, minor road turning lanes correlate strongly 
with minor road ADT, but this is not true for four-legged intersections. Peak truck percentage still 
correlates negatively with crashes and positively with ADT (Table 16), but LIGHT, which there is 
more of on the four-legged intersections, is now insignificant. 

Neither angle variable HAU or DEV is significant on the four-legged intersections. Perhaps this is 
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TABLE 13. Correlation Coefficients and P-Values for Crashes Versus Other Variables, 
Signalized Intersections 

49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-95 

Highway Variable TOTACC INJACC TOTACCI INJACCI 

Corr. P-value Corr. P-value Corr. P-value Corr. P-value 

ADTl 0.0166 0.9099 0.0330 0.8219 0.0686 0.6393 0.0537 0.7138 

ADT2 0.4490 0.0012 0.1020 0.4857 0.3873 0.0060 0.0392 0.7893 

PK%TRUCK 0.2675 0.0631 0.4431 0.0014 0.2760 0.0549 0.4308 0.0020 

PK%TURN 0.2110 0.1457 0.0147 0.9202 0.1496 0.3049 -0.0642 0.6615 

PK%LEFT 0.2175 0.1333 0.0022 0.9879 0.1489 0.3071 -0.0801 0.5845 

PK%THRU1 -0.2693 0.0614 -0.0660 0.6524 -0.2472 0.0868 -0.0086 0.9533 

PK%LEFT1 0.3557 0.0121 0.1521 0.2967 0.3507 0.0135 0.1450 0.3203 

PK%THRU2 0.1482 0.3096 0.1176 0.4210 0.1996 0.1692 0.1686 0.2468 

PK%LEFT2 -0.3230 0.0236 -0.2526 0.0800 -0.3629 0.0104 -0.3101 0.0301 

HAZRAT 0.0136 0.9260 0.0890 0.5433 0.0631 0.6667 0.1462 0.3163 

NODRWYl 0.4005 0.0044 0.1823 0.2099 0.3641 0.0101 0.1021 0.4852 

NODRWY2 0.0255 0.8618 0.0179 0.9028 0.0331 0.8212 0.0014 0.9924 

LTLNl -0.2046 0.1584 -0.0058 0.9683 -0.1022 0.4849 0.1088 0.4569 

RTLNl -0.1107 0.4490 -0.0728 0.6194 -0.1085 0.4582 -0.0824 0.5737 

LTLN2 -0.1755 0.2277 -0.0760 0.6037 -0.1838 0.2062 -0.0688 0.6387 

RTLN2 0.2425 0.0932 0.1363 0.3504 0.2216 0.1260 0.1301 0.3730 

MED WIDTH I -0.0394 0.7882 -0.0216 0.8827 0.0190 0.8968 0.0401 0.7843 

HAU -0.0070 0.9610 0.0079 0.9571 0.0535 0.7153 0.0533 0.7163 

DEV -0.0587 0.6886 -0.1496 0.3051 -0.0874 0.5504 -0.1639 0.2605 
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TABLE 13. Correlation Coefficients and P-Values for Crashes Versus Other Variables, 
Signalized Intersections (continued) 

49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-95 

Highway Variable TOTACC INJACC TOTACCI INJACCI 

Corr. P-value Corr. P-value Corr. P-value Corr. P-value 

RSDl -0.1129 0.4401 -0.0403 0.7832 -0.0984 0.5013 -0.0473 0.7468 

RSDLl -0.2085 0.1505 -0.1310 0.3695 -0.2115 0.1446 -0.1613 0.2681 

RSD2 0.0079 0.9571 -0.0165 0.9104 0.0197 0.8929 -0.0421 0.7739 

RSDL2 -0.0615 0.6749 -0.0829 0.5713 -0.0662 0.6514 -0.1134 0.4379 

HI-1 -0.2232 0.1232 -0.1936 0.1825 -0.2398 0.0970 -0.1815 0.2120 

HEI-1 -0.0152 0.9177 -0.0892 0.5421 -0.0651 0.6567 -0.1457 0.3178 

HI-2 -0.2391 0.0980 -0.2039 0.1601 -0.2230 0.1236 -0.1867 0.1990 

HEI-2 -0.1749 0.2295 -0.1540 0.2907 -0.1487 0.3079 -0.1363 0.3503 

HI COM -0.3268 0.0219 -0.2815 0.0501 -0.3317 0.0199 -0.2613 0.0697 

HEICOM -0.0817 0.5766 -0.1434 0.3258 -0.1186 0.4169 -0.1897 0.1918 

Vl-1 0.0634 0.6654 0.0277 0.8504 0.0113 0.9386 0.0519 0.7230 

VEl-1 0.2196 0.1294 0.1316 0.3674 0.1631 0.2627 0.0891 0.5429 

VCI-1 0.1942 0.1811 0.1029 0.4818 0.0782 0.5933 0.0302 0.8368 

VCEI-1 0.0465 0.7511 0.0069 0.9627 0.0069 0.9626 -0.0549 0.7082 

VI-2 0.1356 0.3531 0.0931 0.5246 0.1388 0.3417 0.1295 0.3752 

VEl-2 0.1486 0.3081 0.1038 0.4778 0.1524 0.2957 0.1353 0.3541 

VCI-2 0.1065 0.4663 0.0355 0.8086 0.0988 0.4993 0.0729 0.6187 

VCEI-2 0.1472 0.3127 0.0875 0.5501 0.1466 0.3147 0.1217 0.4050 

VI COM 0.1417 0.3316 0.0903 0.5372 0.1214 0.4061 0.1315 0.3677 

VEICOM 0.2188 0.1310 0.1437 0.3245 0.1985 0.1715 0.1530 0.2938 

VCICOM 0.1633 0.2621 0.0676 0.6442 0.1163 0.4263 0.0762 0.6026 

VCEICOM 0.1534 0.2927 0.0815 0.5779 0.1345 0.3570 0.0834 0.5687 
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TABLE 13. Correlation Coefficients and P-Values for Crashes Versus Other Variables, 
Signalized Intersections (continued) 

49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-95 

Highway Variable TOTA CC INJACC TOTACCI INJACCI 

Corr. P-value Corr. P-value Corr. P-value Corr. P-value 

ABSGRDl 0.0328 0.8228 -0.0365 0.8032 0.0269 0.8545 -0.0445 0.7614 

ABSGRD2 -0.0822 0.5744 -0.0316 0.8294 -0.1005 0.4920 -0.0461 0.7530 

SPDl -0.1201 0.4111 0.1354 0.3538 -0.0744 0.6112 0.2006 0.1670 

SPD2 0.0246 0.8668 0.2031 0.1616 0.0960 0.5118 0.2816 0.0499 

PROT LT -0.2925 0.0414 -0.0767 0.6006 -0.1242 0.3951 0.0307 0.8340 

LIGHT -0.1336 0.3601 -0.0670 0.6473 -0.0619 0.6729 -0.0827 0.5723 

STATE 0.3690 0.0091 0.1817 0.2115 0.1977 0.1732 0.0481 0.7429 

because they are less variable on the four-legged intersections than on the three-legged intersections, 
with standard deviations on the three-legged intersections being about twice what they are on the 
four-legged intersections. Minor road sight distance right is significant on the four-legged 
intersections, an indication that left-tum and through traffic on the minor road may have a greater 
tendency toward crashes than right-tum traffic. All remaining alignment variables, including grade, 
are insignificant on the four-legged intersections. STATE appears to be significant for four-legged 
intersections, and this is consistent with Table 10. 

Correlation coefficients of crashes with other variables for the signalized intersections are shown in 
Table 12. Remarkably, ADTl is insignificant, and ADT2 is insignificant for injury crashes. This 
is perhaps due to the relatively small sample size and the presence of a variety of other influential 
factors. Peak Truck Percentage, which negatively correlates with ADT (cf. Table 16), although 
weakly, has a strong positive correlation with crashes. Peak turning percentages have some 
significant correlations, positive and negative, with crashes, and they will be examined more closely 
later in this chapter. HAZRAT, channelization, median width, and the angle variables are generally 
insignificant. Median widths are mostly zero, but HAU and DEV, the angle variables, are about as 
variable as in the three-legged intersections and still have a negligible effect. Sight distances and 
horizontal alignment are generally insignificant with the wrong sign. This indicates that when other 
factors are ignored, shorter sight distance and more horizontal curvature lead to fewer crashes. On 
the other hand, vertical alignment, although generally insignificant, has the right sign: other factors 
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ignored, crashes rise with more grade change per unit distance. Speeds, though generally 
insignificant, seem to correlate positively with injury crashes. The existence of a protected left tum, 
which correlates positively with major road ADT, correlates negatively with crashes, as one might 
expect. This may, in part, account for the poor showing of ADTl. Finally, LIGHT is insignificant, 
but STATE shows a positive correlation with crashes. 

As a general rule, correlations are similar for TOTACC and TOTACCI, and for INJACC and 
INJACCI. However, there are significant differences as one passes from all crashes to serious 
crashes (from TOTACC to INJACC, or from TOTACCI to INJACCI). Items that stand out include 
the following: 

• ADTl and ADT2 are both significant at three-legged and four-legged intersections, with 
ADT2 generally more significant; but at the signalized intersections, neither is significant 
except ADT2 with TOT ACC and TOT ACCI. 

• PK%TRUCK correlates negatively with crashes of all types at three-legged and four-legged 
intersections and positively at signalized intersections. 

• Peak turning percentage variables correlate strongly with crashes of all types at three-legged 
and four-legged intersections, and with TOTACC and TOTACCI at signalized intersections. 

• NODRWYl correlates positively with TOTACC and TOTACCI at all intersection types, but 
correlates insignificantly with INJACC and INJACCI at four-legged and signalized 
intersections. 

• MEDWIDTHl correlates negatively with TOTACC and TOTACCI at three-legged and four­
legged intersections, but insignificantly with INJACC and INJACCI. 

• Channelization variables correlate less significantly with INJACC and INJACCI than with 
TOTA CC and TOTA CCI and sometimes have correlation coefficients of unexpected sign. 

• HAU and DEV correlate strongly with all crash types at three-legged intersections. 

• Sight distance variables generally have insignificant correlation, except for RSDR2 at four­
legged intersections, which correlates positively with all crash types. 

• Horizontal alignment variables have insignificant correlation and/or correlation coefficients 
with unexpected sign, except for HEI-1 at three-legged intersections, while HICOM 
correlates negatively with all crash types at signalized intersections (fewer crashes at 
signalized intersections with major or minor road horizontal curves out to 250 feet (76 
meters)). 
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• Vertical alignment variables are insignificant and/or have correlation of unexpected sign, 
except for VI-1 and VEI-1 at three-legged intersections and VEICOM at signalized 
intersections, the effect being stronger for TOT ACC and TOT ACCI than for INJ ACC and 
INJACCI. 

• SPDl correlates negatively with TOTACC and TOTACCI at three-legged and four-legged 
intersections; SPD2 correlates positively with INJACC and INJACCI at four-legged and 
signalized intersections. 

• LIGHT correlates positively with all crash types at three-legged intersections. 

• STATE correlates positively with TOTACC and TOTACCI at four-legged and signalized 
intersections. 

• PROT_LT correlates negatively with TOTACC, but not significantly with INJACC and 
INJACCI for signalized intersections. 

Information pertaining to TOTACC is summarized in Table 14. Features not already mentioned that 
are related to TOT ACC include: 

• ADTl has lessened significance as one passes from three-legged to four-legged to signalized 
intersections. 

• LIGHT correlates positively with TOTACC at three-legged and four-legged intersections 
(perhaps because lights are placed at high crash locations). 

• L TLNl correlates negatively with TOTA CC on all three data sets. 

• At three-legged intersections, HEI-1 and RSDL2 correlate positively with TOTACC. 

• At four-legged intersections, horizontal and vertical variables have correlation coefficients 
of mixed signs with TOTACC, while all sight distances have coefficients of appropriate 
signs, with RSDR2's being significant. 

• At signalized intersections, vertical variables have positive correlation with TOT ACC, 
horizontal variables have negative correlation, and sight distance variables have mixed 
correlation. 

ADT and State Versus Other Variables 

It is generally recognized that ADT is the most important explanatory variable in modeling crashes. 
It is therefore appropriate to make a special effort to determine when other variables are correlated 
with ADT so that one can begin to distinguish effects that are properly due to these variables apart 
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TABLE 14. Correlates ofTOTACC 

84 Three-legged Intersections 

Positive correlates Negative correlates Insignificant correlates 

ADTI *, ADT2* PK%TRUCK* PK%RIGHT1 
PK%TURN*, PK%LEFT* PK%THRU1* HAZRA T (neg) 
PK%LEFT1* PK%LEFT2* (82 int.) RTLNl (neg) 
PK%RIGHT2* (82 int.) MEDWIDTHl* RSD1,RSDR2 
NODRWYl *,HAU*, DEV* SPDl* HI-1 
HEI-1 *,LIGHT* LTLNl VCI-1, VCEI-1 
LTLN2,RTLN2,RSDL2 ABSGRDI 
VI-1, VEI-1, STATE SPD2 (neg) 

72 Four-legged Intersections 

Positive correlates Negative correlates Insignificant correlates 

ADT2* PK%TRUCK* PK%LEFT2, PK%RIGHT2 
PK%TURN* PK%THRU1* (both neg., 70 int.) 
PK%LEFT*, PK%LEFT1 * LTLNl* RTLN2 (neg), HAU, DEV 
PK%RIGHT1* SPDl* RSDl, RSDL2, HI-1 
RSDR2*, STATE* HAZRAT HEI-1 (neg), VI-1 (neg) 
PK%THRU2 (70 int.) RTLNl VEI-1 (neg), VCI-1 (neg) 
NODRWYl, LTLN2 MEDWIDTHl VCEI-1, ABSGRDl (neg) 
ADTl (P-value = 0.2027) SPD2 (neg), LIGHT 

49 Signalized Intersections 

Positive correlates Negative correlates Insignificant correlates 

ADT2*, PK%TRUCK* PK%THRU1* ADTI, F,, F2, PK%RIGHT1 
PK%LEFT1* PK%LEFT2* PK%THRU2, PK%RIGHT2 
NODRWYl*, PROT LT* HAZRAT, NODRWY2 
NODRWYCOM* HI-2*, HICOM*, HI-1 LTLNl, RTLNl (neg) 
F/, F4*, STATE* LTLNl, RSDLl MEDWIDTHl (neg) 
RTLN2*, PK%TURN HAU, DEV (both neg) 
PK%LEFT, VCI-1,VEI-1 RSD 1, RSDL2 (both neg), RSD2 
VEICOM HEI-1, HEI-2 (both neg) 

HEICOM (neg) 
VI-1, VCEI-1 
VI-2, VCI-2, VEI-2, VCEI-2, 
VICOM, VCICOM, VCEICOM 
ABSGRDl, ABSGRD2 (neg) 
SPDl (neg), SPD2, LIGHT (neg) 

"Insignificant" means P-value in excess of 0.20, "*" means P-value less than 0.10 

77 



from their relationship to ADT. Likewise, in a multi-State study, it is desirable to have a sense of 
variables that correlate with the choice of State. This offers some guidance as to whether the State 
variable is genuinely relevant or whether it is a stand-in for other collected variables that may differ 
from one State to another. Tables 15, 16, and 17 exhibit correlations between ADTl, ADT2, and 
STATE versus other highway variables for our three classes of intersections. 

Here we call attention to those variables that correlate with ADT and STATE in all three data sets 
(Tables 15, 16, and 17). Variables that correlate with major road ADT (ADTl), minor road ADT 
(ADT2), and STATE are: 

Positive Correlates with ADTl: 
PK%THRU, PK%THRU1, RSDl 

Negative Correlates with ADTl: 
PK%TRUCK, PK%TURN, PK%LEFT, PK%RIGHT1 

Positive Correlates with ADT2: 
STATE, PK%TURN, PK%LEFT, PK%LEFT1, PK%RIGHT1, NODRWYl, HEI-1 

Negative Correlates with ADT2: 
PK%TRUCK, PK%THRU1, HAZRAT?, MEDWIDTHl, SPDl 

Positive Correlates with STATE: 
ADT2, PK%TURN, PK%LEFT, NODRWYl, VCI-1? 

Negative Correlates with STATE: 
HAZRAT, LTLNl, RTLNl, MEDWIDTHl, SPDl, SPD2 

The criteria for inclusion in this list are that the sign of the correlation coefficient is constant and that 
the P-value is less than 0.10 in at least two of the three intersection classes. Two exceptions are 
noted with question marks. Items that stand out from this catalogue include: 

• Lower truck percentages on heavily traveled roads (trucks avoid these roads, or passenger 
cars favor them). 

• Higher ADT2, more driveways, lower HAZRAT, and lower speeds in Michigan (presumably 
because it is less rural than California). 

• Narrower medians and less major road channelization in Michigan (presumably reflecting 
differences in highway design principles from Michigan to California). 

• Shorter longitudinal sight distances for higher major road ADT (somewhat baffling -
possibly due to both occurring more often in California). 

Another noteworthy feature of Tables 15, 16, and 17 is the relationship of LIGHT to ADT2 and 
STATE. On the three-legged and four-legged intersections, LIGHT and ADT2 are strongly 
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TABLE 15. Correlation Coefficients and P-Values for ADT and STATE Versus 
Intersection Variables, Three-Legged Intersections 

84 rural intersections, major road 4-lane, minor leg stop-controlled, CA and MI, 1993-95 

Highway ADTl ADT2 STATE 
Variable 

Corr. P-value Corr. P-value Corr. P-value 

ADTl 1.0000 0.0000 0.1612 0.1429 -0.1156 0.2951 

ADT2 0.1612 0.1429 1.0000 0.0000 0.2240 0.0406 

STATE -0.1156 0.2951 0.2240 0.0406 1.0000 0.0000 

PK%TRUCK -0.2349 0.0315 -0.2211 0.0433 -0.0993 0.3686 

PK%TURN -0.1079 0.3286 0.6842 0.0001 0.0251 0.8208 

PK%LEFT -0.1319 0.2317 0.6658 0.0001 0.0530 0.6323 

PK%THRU1 0.1024 0.3540 -0.6183 0.0001 0.0213 0.8477 

PK%LEFT1 -0.0353 0.7500 0.6404 0.0001 0.0132 0.9052 

PK%LEFT2 -0.2709 0.0138 -0.1145 0.3058 -0.0380 0.7345 

HAZRAT 0.1405 0.2025 -0.1416 0.1990 -0.4795 0.0001 

NODRWYl 0.1347 0.2217 0.2166 0.0478 0.2425 0.0262 

LTLNl 0.2027 0.0644 -0.1127 0.3076 -0.6794 0.0001 

RTLNl 0.2585 0.0176 -0.0218 0.8442 -0.3067 0.0045 

LTLN2 0.0195 0.8601 0.4336 0.0001 -0.1217 0.2701 

RTLN2 0.0311 0.7786 0.2513 0.0211 0.1744 0.1127 

MEDWIDTHl 0.0251 0.8211 -0.2267 0.0381 -0.3923 0.0002 

HAU -0.0164 0.8823 0.1250 0.2574 0.2042 0.0624 

DEV 0.0992 0.3691 0.0418 0.7056 -0.0654 0.5545 
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TABLE 15. Correlation Coefficients and P-Values for ADT and STATE Versus 
Intersection Variables, Three-Legged Intersections (continued) 

84 rural intersections, major road 4-lane, minor leg stop-controlled, CA and MI, 1993-95 

Highway ADTl ADT2 STATE 
Variable 

Corr. Corr. P-value P-value Corr. P-value 

RSDl 0.2673 0.0140 0.0576 0.6030 0.0280 0.8003 

RSDL2 0.1149 0.2998 -0.0424 0.7020 -0.0923 0.4038 

RSDR2 0.1339 0.2248 0.0034 0.9755 -0.0818 0.4597 

HI-1 0.0765 0.4892 0.0214 0.8472 -0.0258 0.8160 

HEI-1 0.1326 0.2294 0.0347 0.7540 0.1134 0.3043 

VI-1 0.2868 0.0082 0.0772 0.4852 -0.0484 0.6623 

VEI-1 0.2501 0.0218 0.0509 0.6455 -0.0471 0.6706 

VCI-1 -0.0203 0.8545 -0.0719 0.5159 0.1620 0.1410 

VCEI-1 0.1607 0.1442 0.0854 0.4401 0.0467 0.6733 

ABSGRDl 0.1299 0.2389 -0.0680 0.5387 -0.3052 0.0048 

SPDl -0.0703 0.5250 -0.2895 0.0076 -0.4397 0.0001 

SPD2 0.0375 0.7348 -0.1394 0.2061 -0.7916 0.0001 

LIGHT 0.0917 0.4070 0.3625 0.0007 0.3178 0.0032 
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TABLE 16. Correlation Coefficients and P-Values for ADT and STATE Versus 
Intersection Variables, Four-Legged Intersections 

72 rural intersections, major road 4-lane, minor legs stop-controlled, CA and MI, 1993-95 

Highway ADTl ADT2 STATE 
Variable 

Corr. P-value Corr. P-value Corr. P-value 

AD Tl 1.0000 0.0000 -0.1083 0.3653 -0.1436 0.2288 

ADT2 -0.1083 0.3653 1.0000 0.0000 0.4082 0.0004 

STATE -0.1436 0.2288 0.4082 0.0004 1.0000 0.0000 

PK%TRUCK -0.2673 0.0232 -0.2044 0.0850 -0.2459 0.0374 

PK%TURN -0.3284 0.0049 0.6402 0.0001 0.2795 0.0174 

PK%LEFT -0.3205 0.0061 0.5921 0.0001 0.2622 0.0261 

PK%THRU1 0.3087 0.0083 -0.6207 0.0001 -0.2240 0.0586 

PK%LEFT1 -0.2754 0.0192 0.5777 0.0001 0.2677 0.0230 

PK%THRU2 -0.3957 0.0007 0.3468 0.0033 0.0117 0.9231 

PK%LEFT2 0.2937 0.0136 -0.0896 0.4609 -0.0982 0.4186 

HAZRAT 0.1181 0.3230 -0.2264 0.0558 -0.3059 0.0090 

NODRWYl -0.0582 0.6272 0.2336 0.0483 0.3567 0.0021 

LTLNl 0.0548 0.6474 -0.2563 0.0297 -0.8433 0.0001 

RTLNl 0.1089 0.3623 -0.0734 0.5403 -0.4261 0.0002 

LTLN2 -0.0736 0.5389 0.0935 0.4349 -0.0976 0.4148 

RTLN2 0.0991 0.4077 -0.0642 0.5920 -0.0761 0.5250 

MEDWIDTHl 0.2571 0.0292 -0.2597 0.0276 -0.3968 0.0006 

HAU -0.0431 0.7195 -0.0592 0.6214 0.0206 0.8636 

DEV -0.0687 0.5663 0.0417 0.7282 0.0542 0.6514 
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TABLE 16. Correlation Coefficients and P-Values for ADT and STATE Versus 
Intersection Variables, Four-Legged Intersections (continued) 

72 rural intersections, major road 4-lane, minor legs stop-controlled, CA and MI, 1993-95 

Highway ADTl ADT2 STATE 
Variable 

Corr. P-value Corr. P-value Corr. P-value 

RSDl 0.0798 0.5054 -0.0628 0.6003 -0.0706 0.5557 

RSDL2 0.0589 0.6233 0.0066 0.9560 -0.0072 0.9523 

RSDR2 -0.0233 0.8458 0.2311 0.0508 -0.0565 0.6372 

HI-1 0.0037 0.9754 -0.0549 0.6469 -0.0881 0.4620 

HEI-1 0.0080 0.9472 0.3428 0.0032 0.2339 0.0587 

VI-1 -0.0115 0.9237 -0.1108 0.3540 0.1860 0.1178 

VEI-1 -0.0132 0.9122 -0.1220 0.3075 0.1794 0.1316 

VCI-1 -0.0741 0.5365 -0.0976 0.4147 0.2322 0.0497 

VCEI-1 -0.0215 0.8575 -0.0958 0.4233 0.2107 0.0757 

ABSGRDl 0.0926 0.4392 -0.2053 0.0837 -0.2760 0.0190 

SPDl 0.2020 0.0888 -0.3133 0.0074 -0.4738 0.0001 

SPD2 0.0858 0.4738 -0.0523 0.6627 -0.5648 0.0001 

LIGHT -0.1626 0.1725 0.2560 0.0300 0.3873 0.0008 
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TABLE 17. Correlation Coefficients and P-Values for ADT and STATE Versus 
Intersection Variables, Signalized Intersections 

49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-95 

Highway ADTl ADT2 STATE 
Variable 

Corr. P-value Corr. P-value Corr. P-value 

ADTl 1.0000 0.0000 0.1965 0.1759 -0.4544 0.0010 

ADT2 0.1965 0.1759 1.0000 0.0000 0.2397 0.0972 

STATE -0.4544 0.0010 0.2397 0.0972 1.0000 0.0000 

PK%TRUCK -0.2051 0.1575 -0.1001 0.4938 0.1836 0.2067 

PK%TURN -0.2818 0.0498 0.4554 0.0010 0.3116 0.0293 

PK%LEFT -0.2630 0.0679 0.4940 0.0003 0.2893 0.0438 

PK%THRU1 0.3358 0.0183 -0.5271 0.0001 -0.1819 0.2111 

PK%LEFT 1 -0.1856 0.2018 0.5179 0.0001 0.0997 0.4955 

PK%THRU2 -0.3224 0.0239 0.1868 0.1988 -0.0342 0.8157 

PK%LEFT2 0.1800 0.2158 -0.1472 0.3127 -0.0214 0.8839 

HAZRAT 0.2309 0.1105 -0.1939 0.1818 -0.3096 0.0304 

NODRWYl -0.0642 0.6611 0.3133 0.0284 0.3613 0.0108 

NODRWY2 0.1781 0.2209 0.1905 0.1899 -0.0278 0.8495 

LTLNl 0.1756 0.2276 -0.0651 0.6569 -0.3305 0.0204 

RTLNl -0.1709 0.2404 -0.0648 0.6583 -0.0633 0.6657 

LTLN2 -0.3372 0.0178 0.0284 0.8463 0.1088 0.4570 

RTLN2 -0.0858 0.5578 0.3733 0.0083 0.2100 0.1476 

MEDWIDTHl -0.0155 0.9159 -0.1377 0.3456 -0.3992 0.0045 

HAU 0.1417 0.3313 -0.1621 0.2659 -0.2000 0.1682 

DEV -0.1103 0.4504 -0.0192 0.8957 0.0573 0.6956 
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TABLE 17. Correlation Coefficients and P-Values for ADT and STATE Versus 
Intersection Variables, Signalized Intersections (continued) 

49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-95 

Highway ADTl ADT2 STATE 
Variable 

Corr. P-value Corr. P-value Corr. P-value 

RSDl 0.5043 0.0002 0.0011 0.9940 -0.1830 0.2081 

RSDLl 0.3642 0.0101 -0.1004 0.4927 -0.1342 0.3578 

RSD2 0.3954 0.0049 0.1536 0.2921 -0.0701 0.6320 

RSDL2 0.0701 0.6325 -0.0805 0.5827 -0.0702 0.6317 

HI-1 -0.1852 0.2027 -0.0010 0.9944 0.1156 0.4289 

HEI-1 0.0018 0.9903 0.3390 0.0172 0.1476 0.3115 

HI-2 0.1542 0.2900 -0.0449 0.7596 -0.2588 0.0726 

HEI-2 0.1706 0.2412 -0.0373 0.7994 -0.2991 0.0368 

HI COM -0.0688 0.6386 -0.0266 0.8560 -0.0503 0.7314 

HEICOM 0.0675 0.6448 0.3044 0.0334 0.0234 0.8730 

VI-1 -0.0187 0.8987 -0.0131 0.9287 0.0289 0.8439 

VEI-1 -0.0722 0.6221 0.1015 0.4875 0.1496 0.3048 

VCI-1 -0.0985 0.5009 0.0558 0.7036 0.2056 0.1565 

VCEI-1 0.1259 0.3889 0.0336 0.8187 0.0880 0.5478 

VI-2 -0.1754 0.2281 -0.1649 0.2575 -0.1547 0.2886 

VEI-2 -0.1287 0.3783 -0.1801 0.2156 -0.1431 0.3267 

VCI-2 -0.1837 0.2064 -0.1725 0.2359 -0.1489 0.3073 

VCEI-2 -0.1569 0.2818 -0.1358 0.3523 -0.1089 0.4566 

VIC OM -0.1553 0.2866 -0.1441 0.3233 -0.1170 0.4234 

VEICOM -0.1403 0.3361 -0.1123 0.4424 -0.0605 0.6794 

VCICOM -0.1999 0.1685 -0.1364 0.3500 -0.0633 0.6658 

VCEICOM -0.0820 0.5754 -0.1059 0.4688 -0.0566 0.6992 
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TABLE 17. Correlation Coefficients and P-Values for ADT and STATE Versus 
Intersection Variables, Signalized Intersections (continued) 

49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-95 

Highway ADTl ADT2 STATE 
Variable 

Corr. P-value Corr. P-value Corr. P-value 

ABSGRDl -0.0795 0.5873 -0.0396 0.7871 -0.0446 0.7611 

ABSGRD2 -0.0075 0.9590 -0.1583 0.2774 -0.0037 0.9800 

SPDl -0.1053 0.4713 -0.3336 0.0192 -0.1853 0.2025 

SPD2 -0.1776 0.2222 -0.1849 0.2034 -0.0871 0.5520 

PROT LT 0.4829 0.0004 -0.0023 0.9875 -0.7943 0.0001 

LIGHT 0.2200 0.1288 -0.0421 0.7739 -0.2808 0.0506 

correlated: if the minor road ADT is high, there will tend to be lighting. At the signalized 
intersections, 80% of which have lighting (see Table 7), there is no correlation with minor road 
ADT. On the three-legged and four-legged intersections, LIGHT and STATE are positively 
correlated. As noted, Michigan tends to be less rural and to have more minor road ADT, and hence 
more lighting. But LIGHT negatively correlates with STATE on signalized intersections, an 
indication that California signalized intersections are more likely to have lighting. 

Correlations Between Intersection Variables 

Tables 18, 19, and 20 show correlations between pairs of intersection variables within the three data 
sets. Only those correlations are shown for which P-values are less than 0.10. In addition, rather 
than exhibit all peak turning percentage, channelization, alignment, and sight distance variables, we 
only show representative variables from each of these classes. 

Items of special note in these tables that have not already been mentioned include the following: 

• Wider medians, left-tum lanes on the major road, and fewer major road driveways tend to 
go together in the three-legged and four-legged samples. 
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TABLE 18. Correlations Between Intersection Variables in the Three-Legged Sample 

VARIABLE POSITIVE CORRELATES NEGATIVE CORRELATES 

ADTl LTLNl, RTLNl, RSDI, VI-I, VEI-1 PK%TRUCK, PK%LEFT2 

ADT2 PK%TURN, PK%LEFT, PK%LEFTI, NODRWYI, PK%TRUCK, PK%THRUI, 
LTLN2, RTLN2, LIGHT, STATE MEDWIDTHI, SPDI 

STATE ADT2, NODRWYI, HAU, LIGHT HAZRAT, LTLNI, RTLNI, 
CA=O, MI= I MEDWIDTHI, ABSGRDI, SPDI, 

SPD2 

PK%TRUCK MEDWIDTHI, HAU, SPDI ADTI, ADT2, NODRWYI, RSDI, 
RSDR2, HEl-1, VI-I, VEI-1, LIGHT 

PK%TURN ADT2, PK%LEFT, PK%LEFTI, L TLN2, RTLN2, PK%THRUI 
LIGHT 

SPDl PK%TRUCK, HAZRAT, LTLNI, RTLNI, ADT2, NODRWYI, RSDI, RSDR2, 
MEDWIDTHI, SPD2 HI-I, HEI-1, VI-I, VEI-1, VCEI-1, 

LIGHT, STATE 

SPD2 HAZRAT, LTLNI, RTLNI, MEDWIDTHI, LIGHT, STATE 
ABSGRD I, SPD I 

HAZRAT LTLNI, HI-I, ABSGRDI, SPDl, SPD2 NODRWYI, LIGHT, STATE 

NOD RWY I ADT2, RSDI, RSDR2, HI-I, HEI-1, PK%TRUCK, HAZRAT, LTLNl, 
VEI-1, LIGHT, STATE RTLNl, MEDWIDTHI, SPDI 

MEDWIDTHI PK%TRUCK, LTLNI, RTLNI, SPDI, SPD2 ADT2, NODRWYI, RSDI, HI-I, 
HEI-1, LIGHT 

LTLNI ADTI, HAZRAT, RTLNI, MEDWIDTHI, SPDl, NODRWYl, HJ-1, HEI-1, VCI-1, 
SPD2, STATE LIGHT 

HAU PK%TRUCK, LIGHT, STATE RSD l, Hl-1, ABSGRD I 

DEV RSDI, HEl-1 

RSDl ADTI, NODRWYI, DEV, HI-I, HEI-1, VI-I, PK%TRUCK, MEDWTDTHI, HAU, 
Reciprocal Sight Distance VEl-1, ABSGRDl, LIGHT SPDl 

HEl-1 NODRWYl, DEV, RSDI, RSDL2, RSDR2, HI-1, PK%TRUCK, LTLNI, MEDWIDTHI, 
Horizontal out to 800 ft VEl-1 SPDI 

VEI-1 ADTI, NODRWYl, RSDI, RSDR2, HI-I, HEI-1, PK%TRUCK, SPDl 
Vertical out to 800 ft VI-1, VCI-1, VCEI-1, ABSGRDI 

ABSGRDI HAZRAT, RTLNl, RSDl, RSDR2, HI-I, VI-I, HAU, STATE 
VEI-1, VCEI-1, SPD2 

LIGHT ADT2, PK%TURN, PK%LEFT, NODRWYI, PK%TRUCK, PK%THRUI, 
No=O, Yes= I LTLN2, HAU, RSDI, STATE HAZRAT, LTLNl, MEDWIDTHl, 

SPDl, SPD2 

I ft= 0.305 m 
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TABLE 19. Correlations Between Intersection Variables in the Four-Legged Sample 

VARIABLE POSITIVE CORRELATES NEGATIVE CORRELATES 

ADTI PK%THRU1, PK%LEFT2, MEDWIDTHI, SPDI PK%TRUCK, PK%TURN, PK%LEFT, 
PK%LEFT1, PK%THRU2 

ADT2 PK%TURN, PK%LEFT, PK%LEFT1, PK%THRU2, PK%TRUCK, PK%THRU1, HAZRAT, 
NODRWYI, RSDR2, HEI-1, LIGHT, STATE LTLNl, MEDWIDTHl, ABSGRDI, SPDI 

STATE ADT2, PK%TURN, PK%LEFT, PK%LEFT1, PK%TRUCK, PK%THRU1, HAZRAT, 
CA=O, MI= I NODRWYI, HEI-1, VCI-1, VCEI-1, LIGHT L TLN 1, RTLN 1, MED WIDTH l, 

ABSGRD l, SPD 1, SPD2 

PK%TRUCK PK%THRU2, LTLNI, RTLNI, RTLN2, SPDI ADTI, ADT2, PK%TURN, PK%LEFT, 
PK%LEFT1, HAZRAT, NODRWYl, DEV, 
RSDl, RSDL2, RSDR2, LIGHT, STATE 

PK%TURN ADT2, PK%LEFT, PK%LEFT1, PK%THRU2, ADTl, PK%TRUCK, PK%THRU1, LTLNl, 
NODRWYI, LIGHT, STATE RTLNI, RTLN2, MEDWIDTHl, SPDI 

SPDl ADTI, PK%TRUCK, PK%THRU1, LTLNI, RTLNl, ADT2, PK%TURN, PK%LEFT, PK%LEFTI, 
RTLN2, MEDWIDTH!, SPD2 NODRWYI, RSDL2, RSDR2, HEl-1, LIGHT, 

STATE 

SPD2 LTLNI, RTLNI, DEV, SPDI NODRWYl, HEI-1, VI-I, VEl-1, 
VCI-1, VCEl-1, STATE 

HAZRAT LTLNI, DEV, RSDI, RSDL2, RSDR2, HI-I, ADT2, PK%TRUCK, PK%THRU2, RTLNI, 
ABSGRDl RTLN2, STATE 

NODRWYI ADT2, PK%TURN, PK%LEFT, PK%LEFT1, RSDl, PK%TRUCK, PK%THRUI, LTLNI, RTLNI, 
RSDL2, RSDR2, HEI-1, LIGHT, STATE RTLN2, MED WIDTH I, SPD I, SPD2 

MEDWIDTHI ADTI, PK%THRUI, LTLNl, LTLN2, SPDl ADT2, PK%TURN, PK%LEFT, PK%LEFTI, 
NODRWYI, LIGHT, STATE 

LTLNI PK%TRUCK, HAZRAT, RTLNl, MEDWIDTHI, ADT2, PK%TURN, PK%LEFT, PK%LEFTI, 
SPD!,SPD2 NODRWYI, VCI-1, VCEl-1, LIGHT, STATE 

HAU DEV,ABSGRDl 

DEV HAZRAT, HAU, RSDR2, ABSGRDl, SPD2 PK%TRUCK, RTLNl, RTLN2 

RSD, Reciprocal HAZRAT, NODRWYI, RSDL2, RSDR2, HI-I, PK%TRUCK, PK%THRU2, RTLNl 
Sight Distance ABSGRDI 

HEI-1, Horizontal out ADT2, NODRWYI, STATE SPDl, SPD2 
to 800 ft 

VEI-1, Vertical out to RSDL2, VI-I, VCI-1, VCEI-1, ABSGRDI RTLN2, SPD2 
800 ft 

ABSGRDI HAZRAT, HAU, DEV, RSDI, RSDL2, RSDR2, HI-I, ADT2, PK%THRU2, RTLNI, RTLN2, 
VEI-1 STATE 

LIGHT ADT2, PK%TURN, PK%LEFT, PK%LEFT1, PK%TRUCK, PK%THRU1, LTLNI, RTLNI, 
No=O, Yes= I NODRWYl, STATE RTLN2, MEDWIDTHI, SPDl 

1ft=0.305 m 
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TABLE 20. Correlations Between Intersection Variables in the Signalized Sample 

VARIABLE POSITIVE CORRELATES NEGATIVE CORRELATES 

ADTl PK%THRU1, RSDl, RSDLl, RSD2, PROT_LT PK%TURN, PK%LEFT, PK%THRU2, 
LTLN2, STATE 

ADT2 PK%TURN, PK%LEFT, PK%LEFT1, NODRWYl, PK%THRUI, SPDl 
RTLN2, HEI-1, HEICOM, STATE 

STATE ADT2, PK%TURN, PK%LEFT, NODRWYI ADTI, HAZRAT, LTLNI, 
CA=O, MI= I MEDWIDTHI, Hl-2, HEl-2, 

PROT_LT, LIGHT 

PK%TRUCK SPD2 

PK%TURN ADT2, PK%LEFT, PK%LEFT1, NODRWYI, HEI-1, ADT2, PK%THRUI, PK%THRU2, 
HEICOM, VEI-1, VEICOM, VCI-2, VCEI-2, SPDI 
VCEICOM, ABSGRDl 

SPDl RTLNl, RTLN2, SPD2 ADT2, PK%TURN, PK%LEFT, 
NODRWYl, NODRWY2, RSDl, 
RSDLI, RSDL2, HEI-1, HEICOM, 
VCEI-1, LIGHT 

SPD2 PK%TRUCK, PK%THRU2, LTLNI, RTLN2, SPDI PK%LEFT2, NODRWYI, 
NODRWY2, RSDl, RSDLI, RSD2, 
RSDL2, HEICOM, LIGHT 

HAZRAT RSDI, VCEI-1 NODRWY2, RTLNI, VCI-1, STATE 

NOD RWY I ADT2, PK%TURN, PK%LEFT, NODRWY2, RSD2, PK%THRUI, HI-2, PROT_LT, SPDI, 
RSDL2, STATE SPD2 

NODRWY2 PK%LEFT2, NODRWYI, RSDL2, LIGHT PK%THRU2, HAZRAT, SPDI, SPD2 

MEDWIDTHl Vl-2, VEl-2, VCI-2, VCEI-2, VCICOM, VCEICOM, RTLN2, HAU, STATE 
PROT_LT 

LTLNI LTLN2, PROT_LT, SPD2 HEJ-1, VCJ-1, STATE 

HAU MED WIDTH I HI-I, HICOM 

DEV HI-1,HICOM 

RSD 1, Reciprocal ADTI, HAZRAT, RSDLI, RSD2, RSDL2, HI-I, RTLN I, SPD 1, SPD2 
Sight Distance HEI-1, HEICOM, VI-I, VEI-1, VCEI-1, ABSGRDl, 
along Major Road PROT_LT, VEI-1, ABSGRDl, LIGHT 

RSD2, Recip. Sight ADTl, PK%LEFT2, NODRWYI, RSDl, RSDLI, HI-2, PK%THRU2, SPD2 
Dist along Minor Rd HEI-2, ABSGRDl, ABSGRD2 

HEICOM ADT2, PK%TURN, PK%LEFT, PK%LEFTI, RSDI, PK%THRU1, SPDI, SPD2 
Horizontal out to RSDL2, HI-I, HI-2, HICOM, HEI-1, HEI-2, VEI-1, 
800 ft, All legs VCEI-1, ABSGRDI 

VEICOM, Vertical PK%TURN, VI-I, VI-2, VICOM, VEI-1, VEI-2, VCT-1, PK%THRU 
out to 800 ft, VCI-2, VCICOM, VCEI-1, VCEI-2, VCEICOM, 
All legs ABSGRDl, ABSGRD2 

I ft=0.305 m 
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TABLE 20. Correlations Between Intersection Variables in the Signalized Sample 
(continued) 

VARIABLE POSITIVE CORRELATES NEGATIVE CORRELATES 

ABSGRDl PK%TURN, PK%LEFT, PK%THRU1, MEDWIDTHl 
Major Road RSDl, RSD2, RSDL2, HI-1, 

HICOM, VI-1, VICOM, 
VEI-1, VEICOM, VCI-1, 
VCEI-1, VCEICOM, 
ABSGRD2 

ABSGRD2 RSD2, VI-2, VICOM, VEI-2, 
Minor Road VEICOM, VCI-2, VCICOM, 

VCEI-2, VCEICOM, 
ABSGRDl 

LIGHT PK%LEFT2, NODRWY2, PK%LEFT1, RTLN2, SPDl, 
No=O,Yes=l RSDLl, RSDL2 SPD2, STATE 

PROT LT ADTl, LTLNl, NODRWYl, STATE 
No=O,Yes=l MEDWIDTHl, RSDl, 

RSDLl, HEI-2 

• Major road speeds tend to be higher when major road channelization is present and when 
medians are wider in the three-legged and four-legged samples. 

• Major road speeds tend to be lower when minor road ADT is higher, when there are more 
major road driveways, when sight distance is restricted, when lighting is present, or when 
horizontal or vertical curves are present. This happens in all three data sets. 

• Lighting is more likely to be present when minor road ADT is high, when the peak turning 
percentages are high, or when the number of major road driveways is high. This applies to 
the three-legged and four-legged samples. 

• At signalized intersections, protected left turns are more likely to occur in California than in 
Michigan (17 out of 18 CA signalized intersections have protected left turns, while only 4 
out of 31 MI signalized intersections do). 

A couple of anomalies are evident from the tables. In Table 19, for the four-legged intersections, 
a negative correlation exists between the presence of a left-tum lane on the major road and peak 
turning percentages, including major road left turns. When a higher fraction of the traffic is turning, 
it is less likely that there is a turning lane. It may be that the motive for installing turning lanes is 
more to prevent disruption of through traffic than to assist turning drivers. Another oddity, this time 
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in Table 20 for signalized intersections, is the negative correlation between HAZRAT and VCI-1, 
accompanied by a positive correlation between HAZRA T and VCEI-1. HAZRA T is measured out 
to 250 feet (76 meters) as is VCI-1, while VCEI-1 is measured out to 800 feet (244 meters). A total 
of37 out of 49 signalized intersections have VCI equal to zero, while 25 out of 49 have VCEI equal 
to zero. The two highest hazard ratings occur at intersections with VCI equal to zero, but with VCEI 
equal to 6.0 and 3.46 (average VCEI is 0.952), and this contributes to the anomalous correlation. 

Correlations for Single-Vehicle and Multiple-Vehicle Crashes at Signalized Intersections 

For the signalized intersections, an attempt was made to analyze single-vehicle crashes and multiple­
vehicle crashes separately and to relate them to various flow patterns derived from the traffic data. 
The variables TOTACCS and TOTACCM, representing a decomposition ofTOTACC into single­
vehicle crashes and multiple-vehicle crashes, were compared with the intersection variables and with 
the flow variables Fh F2, F3, F4, PRODFADJ, PRODFOPP, and SUM:F. The correlation coefficients 
and P-values are shown in Table 21. 

Conclusions that can be drawn from Table 21 with regards to the signalized sample are: 

• Single-vehicle crashes show a slight negative correlation with major road ADT and major 
road flows. 

• Multiple-vehicle crashes are strongly correlated with minor road flows and with the 
interaction variable for adjacent legs, as well as with peak truck percentage and left-tum 
percentage on the major road. 

• HAZRAT's correlation coefficient has the correct sign for single-vehicle crashes, but is 
insignificant, as are the driveway variables. 

• Horizontal alignment variables are negatively correlated with both kinds of crashes (one may 
speculate that horizontal alignment causes drivers to exert extra caution at signalized 
intersections), and protected left turns reduce both kinds of crashes. 

• Minor road vertical alignment contributes to single-vehicle crashes, and lighting reduces 
these crashes significantly. 

The correlation of both kinds of crashes with the STATE variable has already been noted, i.e., 
Michigan is overrepresented in crashes. However, since ST ATE has a strong negative correlation 
with PROT_LT, it is not clear which of these two variables has the dominant influence. 

Turning Percentage Variables 

Intersection crashes are naturally related to turning percentages at intersections. However, sorting 
out the relative importance ofleft turns versus right turns and turns from the major road versus the 
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TABLE 21. Correlation Coefficients and P-Values for Single-Vehicle and Multiple-Vehicle 
Crashes Versus Signalized Intersection Variables 

49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-95 

Highway TOTACCS TOTACCM 
Variable 

Corr. P-value Corr. P-value 

ADTl -0.1175 0.4213 0.0386 0.7923 

ADT2 0.1682 0.2480 0.4545 0.0010 

F1 -0.1140 0.4365 0.0303 0.8365 

F2 -0.0722 0.6222 0.0809 0.5807 

F3 0.1650 0.2571 0.3048 0.0332 

F4 0.0584 0.6904 0.4461 0.0013 

PRODFADJ 0.1018 0.4865 0.3931 0.0052 

PRODFOPP -0.0588 0.6882 0.1543 0.2899 

SUMF -0.0201 0.8907 0.2349 0.1043 

PK%TRUCK 0.1853 0.2025 0.2558 0.0761 

PK%TURN 0.1132 0.4386 0.2075 0.1526 

PK%LEFT 0.1188 0.4161 0.2136 0.1406 

PK%THRU1 -0.0793 0.5882 -0.2763 0.0546 

PK%LEFT 1 0.1450 0.3203 0.3579 0.0116 

PK%THRU2 -0.0374 0.7986 0.1664 0.2533 

PK%LEFT2 -0.1490 0.3069 -0.3220 0.0240 

HAZRAT 0.1001 0.4938 -0.0030 0.9838 

NODRWYl 0.1245 0.3940 0.4098 0.0035 

NODRWY2 -0.1132 0.4386 0.0475 0.7459 
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TABLE 21. Correlation Coefficients and P-Values for Single-Vehicle and Multiple-Vehicle 
Crashes Versus Signalized Intersection Variables (continued) 

49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-95 

Highway TOTACCS TOTACCM 
Variable 

Corr. P-value Corr. P-value 

LTLNl -0.0669 0.6478 -0.2088 0.1499 

RTLNl 0.0683 0.6410 -0.1314 0.3682 

LTLN2 -0.0727 0.6194 -0.1764 0.2253 

RTLN2 0.2169 0.1345 0.2232 0.1231 

MEDWIDTHl -0.0724 0.6209 -0.0297 0.8395 

HAU -0.0737 0.6149 0.0054 0.9704 

DEV -0.0708 0.6289 -0.0508 0.7288 

RSDl -0.1429 0.3275 -0.0965 0.5095 

RSDLl -0.1760 0.2265 -0.1938 0.1821 

RSD2 -0.1453 0.3191 0.0341 0.8159 

RSDL2 -0.2095 0.1485 -0.0293 0.8415 

HI-1 -0.1041 0.4766 -0.2223 0.1248 

HEI-1 -0.1815 0.2121 0.0156 0.9150 

HI-2 -0.1812 0.2128 -0.2258 0.1187 

HEI-2 -0.1750 0.2292 -0.1577 0.2792 

HI COM -0.1924 0.1853 -0.3184 0.0258 

HEICOM -0.2382 0.0993 -0.0461 0.7529 
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TABLE 21. Correlation Coefficients and P-Values for Single-Vehicle and Multiple-Vehicle 
Crashes Versus Signalized Intersection Variables (continued) 

49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-95 

Highway TOTACCS TOTACCM 
Variable 

Corr. P-value Corr. P-value 

VI-1 -0.0295 0.8403 0.0735 0.6156 

VEI-1 -0.0421 0.7741 0.2442 0.0908 

VCI-1 -0.0302 0.8367 0.2148 0.1384 

VCEI-1 -0.1738 0.2324 0.0808 0.5811 

VI-2 0.3434 0.0157 0.0856 0.5587 

VEI-2 0.3269 0.0219 0.1026 0.4829 

VCI-2 0.3238 0.0232 0.0578 0.6934 

VCEI-2 0.3051 0.0331 0.1050 0.4729 

VI COM 0.2749 0.0559 0.1043 0.4759 

VEICOM 0.2629 0.0680 0.1895 0.1922 

VCICOM 0.2818 0.0498 0.1264 0.3867 

VCEICOM 0.1924 0.1853 0.1315 0.3680 

ABSGRDl -0.0753 0.6071 0.0487 0.7398 

ABSGRD2 0.1030 0.4812 -0.1068 0.4652 

SPDl 0.0794 0.5875 -0.1435 0.3253 

SPD2 0.1588 0.2758 -0.0015 0.9919 

PROT-LT -0.3996 0.0045 -0.2449 0.0899 

LIGHT -0.4359 0.0017 -0.0672 0.6464 

STATE 0.3356 0.0184 0.3387 0.0173 
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minor road, as well as the direction of the effect in each case, is not easy since the turning percentage 
variables are strongly related to one another. In Tables 22 and 23, some of the relevant correlation 
coefficients are presented. 

Table 22 shows the correlation coefficients for the various turning percentages. It supports the con­
ventional wisdom, although not perfectly. PK%LEFT1 correlates positively with PK%RIGHT2 

TABLE 22. Correlation Coefficients and P-Values for Peak Turning Percentage Variables 

Variable Pair 3-legged 4-legged signalized 
Corr. P-value Corr. P-value Corr. P-value 

PK%LEFT1 
vs. PK%THRU1 -0.8853 0.0001 -0.8964 0.0001 -0.7744 0.0001 

PK%RIGHT1 0.5588 0.0001 0.6519 0.0001 0.2101 0.1473 

PK%LEFT2 -0.2891 0.0084 -0.1704 0.1584 -0.4724 0.0006 

PK%THRU2 0.2642 0.0271 0.1307 0.3709 

PK%RIGHT2 0.2891 0.0084 -0.0109 0.9290 0.3477 0.0144 

PK%THRU1 
vs. PK%RIGHT1 -0.8803 0.0001 -0.9205 0.0001 -0.7813 0.0001 

PK%LEFT2 0.0165 0.8829 0.0248 0.8385 0.0716 0.6248 

PK%THRU2 -0.2937 0.0136 -0.0995 0.4965 

PK%RIGHT2 -0.0165 0.8829 0.1621 0.1801 0.0491 0.7378 

PK%RIGHT1 
vs. PK%LEFT2 0.2673 0.0152 0.1077 0.3750 0.3554 0.0122 

PK%THRU2 0.2686 0.0245 0.0248 0.8657 

PK%RIGHT2 -0.2673 0.0152 -0.2670 0.0255 -0.4189 0.0027 

PK%LEFT2 
vs. PK%THRU2 -0.1966 0.1028 -0.6536 0.0001 

PK%RIGHT2 -1.0000 0.0001 -0.7874 0.0001 -0.2543 0.0779 

PK%THRU2 
VS. PK%RIGHT2 -0.4495 0.0001 -0.5657 0.0001 
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(exception: the four-legged intersections where the correlation is negligible) and negatively with 
PK%LEFT2. Likewise, PK%RIGHT1 correlates positively with PK%LEFT2 and negatively with 
PK%RIGHT2. The positive correlations are expected since the corresponding flows are reversals 
of one another. The negative correlations result at least in part from the fact that PK%LEFT2 and 
PK%RIGHT2 are negatively correlated with one another. The four-legged intersections are less 
regular than the other two intersection classes. These correlations are, of course, based on rough 
information since peak hours in the morning and the afternoon were selected in a crude manner and 
there is no reason why flows should reverse in any precise way (even if peak hours were selected 
with great care). 

Table 23, extracted in part from Tables 11, 12, and 13, shows the relationship between the crash 
variables and the turning percentages for the three classes of intersections. What immediately strikes 
the eye is that PK%LEFT1 is positively correlated with all types of crashes at all types of 
intersections, while PK%LEFT2 (or for that matter PK% THRUl) is negatively correlated with all 
types of crashes at all types of intersections. Since PK%LEFT2 = 100 - PK% THRU2 -
PK%RIGHT2, what is being said is that the sum of PK%THRU2 and PK%RIGHT2 is positively 
correlated with crashes. The last two columns of Table 23 confirm this. In general, both 
PK% THRU2 and PK%RIGHT2 are positively correlated with crashes; in cases where one of them 

TABLE 23. Correlation Coefficients and P-Values for Crashes Versus Peak Turning 
Percentage Variables 

PK%LEFTI PK%THRU! PK%RIGHTI PK%LEFT2 PK%THRU2 PK%RIGHT2 

TOTACC 
3-legged 0.2786, 0.0103 -0.2170, 0.0474 0.1027, 0.3525 -0.2096, 0.0588 0.2096, 0.0588 
4-legged 0.3532, 0.0023 -0.3022, 0.0099 0.2055, 0.0833 -0.1021, 0.4003 0.1688, 0.1625 -0.0131,0.9144 
signalized 0.3557, 0.0121 -0.2693, 0.0614 0.0652, 0.6565 -0.3230, 0.0236 0.1482, 0.3096 0. 1626, 0.2643 

TOTACCI 
3-legged 0.3098, 0.0041 -0.2819, 0.0094 0.1867, 0.0890 -0.1900, 0.0873 0.1900, 0.0873 
4-legged 0.3794, 0.0010 -0.3263, 0.0052 0.2235, 0.0590 -0.1088, 0.3 702 0.2013, 0.0948 -0.0275, 0.8215 
signalized 0.3507, 0.0135 -0.2472, 0.0868 0.0361, 0.8056 -0.3629, 0.0104 0.1996, 0.1692 0.1403, 0.3362 

INJACC 
3-legged 0.2612, 0.0164 -0.1745, 0.1123 0.0448, 0.6861 -0.1628, 0.1440 0.1628, 0. 1440 
4-legged 0.2020, 0.0889 -0.1457, 0.2219 0.0712, 0.5521 -0.0883, 0.4674 0.0813, 0.5033 0.0293, 0.8098 
signalized 0.1521, 0.2967 -0.0660, 0.6524 -0.0481, 0.7427 -0.2526, 0.0800 0.1176, 0.4210 0.1249, 0.3925 

INJACCI 
3-legged 0.2884, 0.0078 -0.2242, 0.0403 0.1056, 0.3389 -0.1446, 0.1950 0.1446, 0.1950 
4-legged 0.2190, 0.0645 -0.1647, 0.1668 0.0886, 0.4591 -0.0961, 0.4288 0.1081, 0.3729 0.0196, 0.8723 
signalized 0.1450, 0.3203 -0.0086, 0.9533 -0.1298, 0.3 742 -0.3101, 0.0301 0.1686, 0.2468 0.1224, 0.4022 

TOTACCS 
signalized 0.1450, 0.3203 -0.0793, 0.5882 -0.0205, 0.8887 -0.1490, 0.3069 -0.0374, 0.7986 0.2101, 0.1473 

TOTACCM 
signalized 0.3579, 0.0116 -0.2763, 0.0546 0.0739, 0.6140 -0.3220, 0.0240 0.1664, 0.2533 0.1383, 0.3434 
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is not (and in those cases, the correlation is insignificant), the other one is still positively correlated 
with crashes. Right turns from the minor road, including right turns on red, are certainly occasions 
for crashes. It might be argued that drivers turning left from the minor road are more vigilant than 
drivers turning right and are at less risk than drivers going through (between legs 3 and 4). Drivers 
turning left from the major road, at least at the three-legged and four-legged intersections, must be 
concerned about both opposing traffic and traffic behind them, whereas drivers turning left from a 
stop-controlled minor road have less risk from traffic behind them. According to Table 22, 
PK%LEFT2 correlates negatively with PK%LEFT1. This suggests that the negative correlation of 
crashes with PK%LEFT2 may, in part, be a consequence of the positive correlation of crashes with 
PK%LEFTI. 

Crashes Versus ADT 

Examination of correlation coefficients shows that ADT unsupported by other variables, especially 
ADTl, plays a smaller role as one passes from three-legged to four-legged to signalized 
intersections. To understand this phenomenon better, we examine grouped data in the manner of 
Hauer et al. (1988). For each of the three data sets, intersections were divided into four groups by 
increasing major road ADT with an effort to equalize the number of crashes in each group to the 
extent possible. Likewise, intersections were divided into four groups by increasing minor road 
ADT with roughly equal crash counts in each group. Then, 16 cells were defined by means of the 
grouping. In each eel~ the number of intersections was counted, along with the number of crashes 
(TOTACC) at its intersections during 1993-1995 and the ratio (the average number of crashes per 
intersection). The numbers obtained are shown in Tables 24, 25, and 26. In addition, marginal 
counts were made for the major road ADT groups and the minor road ADT groups of the same 
variables (number of intersections, number of crashes, and average number of crashes per 
intersection). 

It is evident from the tables that some cells were empty or sparsely occupied. For example, in Table 
24, there are no intersections in the highest quartile for major road ADT and the second highest 
quartile for minor road ADT. There are also two empty cells in Table 25. If the cells were uniformly 
occupied, the average number in each cell would be 84/16 = 5.25, 72116 = 4.5, and 49116:::: 3.1 in 
Tables 24, 25, and 26, respectively. 

In Figures 5, 7, and 9, the marginal distributions with respect to major road ADT are plotted, and in 
Figures 6, 8, and 10, those with respect to minor road ADT are plotted. The horizontal variable in 
each case is the median ADT of the group, and the vertical variable is the average number of crashes 
per intersection in the group. The number of crashes per intersection generally appears to increase 
with increasing minor road ADT, with allowances made for noise due to the smallness of the sample 
sizes. The number of crashes per intersection versus major road ADT shows a similar but more 
erratic trend, except for the signalized intersections (Figure 9). The plot for the latter shows very 
little change in the crashes per intersection as major road ADT is varied. Note the scale. 
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TABLE 24. Crashes Versus Grouped Major and Minor Road ADT, Three-Legged Sample 
3 1 d 4 1 b 2 1 11 d 1. . CA d MI 1993 95 - egge , - ane y - ane, stop-contro e rura mtersect1ons, an 

' -

I 

No. oflntersections A D T 1 
No. of Crashes 
Crashes/Intersection 2,367 to 11,917 to 15,168 to 17,379 to 

11,916 15,167 17,378 33,058 

A 15 - 250 22 5 2 6 35 
18 21 7 33 79 
0.82 4.20 3.50 5.50 2.26 

D 251 - 820 11 6 1 7 25 
30 20 6 31 87 

2.73 3.33 6.00 4.43 3.48 

T 821 - 1,270 6 4 3 0 13 
23 19 33 75 

3.83 4.75 11.00 5.77 

2 1,271 - 3,001 2 4 2 3 11 
9 29 23 24 85 
4.50 7.25 11.50 8.00 7.73 

I 
41 19 8 16 ru 80 89 69 88 

1.95 4.68 8.63 5.50 
6 

8 
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TABLE 25. Crashes Versus Grouped Major and Minor Road ADT, Four-Legged Sample 
4-legged, 4-lane by 2-lane, stop-controlled rural intersections, CA and MI, 1993-95 

No. of Intersections A D T 1 D No. of Crashes 
Crashes/Intersection 3,350 to 7,685 to 12,001 to 19,333 to 

7,684 12,000 19,332 73,000 

21 - 340 9 15 4 6 34 
21 36 17 24 98 

A 2.33 2.40 4.25 4.00 2.88 

341 - 800 3 8 6 4 21 
6 31 44 17 98 

D 2.00 3.88 7.33 4.25 4.67 

801 - 1,051 0 3 1 3 7 
17 18 62 97 

T 5.56 18.00 20.67 13.86 

1,052 - 2,018 6 2 2 0 10 
72 17 16 105 

2 12.00 8.50 8.00 10.50 

I I 
18 28 13 13 rn 99 101 95 103 
5.50 3.61 7.31 7.92 

8 
3 
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TABLE 26. Crashes Versus Grouped Major and Minor Road ADT, Signalized Sample 

I 

Signalized, 2-lane by 2-lane, 4-legged rural intersections, CA and MI, 1993-95 

No. of Intersections A D T 1 No. of Crashes 
Crashes/Intersection 4,647 tc 7,581 to 8,834 to 12,826 to 

A 

D 

T 

2 

7,580 8,833 12,825 25,133 

940 - 3,003 4 3 1 7 
70 65 17 98 
17.50 21.67 17.00 14.00 

3,004 - 4,192 4 3 4 2 
68 69 119 13 
17.00 23.00 29.75 6.50 

4,193 - 5,450 4 4 4 1 
76 78 79 25 
19.00 19.50 19.75 25.00 

5,451 - 12,478 1 1 3 3 
31 30 60 119 
31.00 30.00 20.00 39.67 

I 
13 11 12 13 

245 242 275 255 
18.85 22.00 22.92 19.62 
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FIGURE 10. Crashes Versus Minor Road ADT, Signalized Sample 

A.M. Versus P.M. Truck Percentages 

The large amount of traffic movement data collected for this report permits a variety of special 
studies. Table 27 is one illustrative example. For related items, see the appendix. 

Table 27 indicates that the truck percentage is somewhat variable, and that in the morning, the truck 
percentage is higher than in the evening (except for the Michigan signalized intersections). Miaou 
et al. (1993) recommend that future studies include a time-of-day variable in estimating truck 
percentages. 

CONCLUSIONS 

This chapter began with the development of variables for analysis and modeling. A variety of 
variables were constructed relating to crash counts, ADT, peak-hour truck traffic, turning 
percentages, geometry, channelization, alignments, and driveway counts. A variable for State was 
defined, underscoring the possibility that in different regions and/or epochs, crash experience may 
be quantitatively distinct despite similar values for intersection variables. 
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TABLE 27. A.M. and P.M. Truck Percentages by State 

3-Legged Intersections 

California (60) Michigan (24) CA &MI (84) 

AM%TRUCK 10.11 10.31 10.17 

PM%TRUCK 9.19 6.98 8.56 

PK%TRUCK 9.52 8.21 9.15 

4-Legged Intersections 

California (54) Michigan ( 18) CA&MI (72) 

AM%TRUCK 13.76 8.94 12.56 

PM%TRUCK 10.98 7.11 10.01 

PK%TRUCK 11.98 7.83 10.95 

Signalized Intersections 

California ( 18) Michigan (31) CA&MI (49) 

AM%TRUCK 8.34 9.70 9.20 

PM%TRUCK 6.62 10.16 8.86 

PK%TRUCK 7.36 9.89 8.96 

Then, in Tables 5, 6, and 7, a summary of univariate statistics for these variables on the three data 
sets was given. More crashes occur at signalized intersections than at four-legged intersections, and 
more occur at four-legged than at three-legged intersections (cf. Table 8). Crashes tend to be more 
severe in California (Table 9), but more frequent in Michigan (Table 10). While this may, in part, 
be attributable to systematic differences in intersection variables between the two States (cf. Tables 
15, 16, and 17), it is a reminder that the STATE variable may make an independent contribution. 

The chapter also examines correlations between pairs of variables. This includes crashes versus 
other variables (Tables 11, 12, 13, and 14), ADT and STATE versus other intersection variables 
(Tables 15, 16, and 17), single-vehicle and multiple-vehicle crashes versus other signalized 
intersection variables (Table 21), and turning percentage variables (Tables 22 and 23). The most 
striking finding is the relevant insignificance of major road ADT in relation to the signalized 
intersection crashes (see especially Figure 9). Another finding of importance is the negative 
correlation between minor road left-tum percentage and crashes present for all three intersection 
classes (Table 23). This, of course, implies a positive correlation between crashes and the sum of 
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minor road through and right-tum percentages. Given the range of minor road left-tum percentages 
within and among the three data sets (Tables 5, 6, and 7), this seems especially significant. Since 
the hazards that a left-turning vehicle faces are greater than those that a right-turning vehicle faces, 
the possibility exists that drivers making left turns from the minor road exercise more care than other 
drivers approaching the intersection from a minor leg. Perhaps more relevant is the fact that since 
left-tum percentages from the minor road correlate negatively with right-tum percentages from the 
minor road, they also correlate negatively with left-tum percentages from the major road. As minor 
road left turns increase, major road left turns decrease, and the net effect of the two opposite changes 
is to reduce crashes. 

An issue that will affect the modeling is the multivariate relationships, especially the relationship 
among crashes and pairs of highway variables. Thus, for the signalized intersections, the relative 
insignificance of crashes versus major road ADT may indicate the effect of a third variable that 
correlates with ADT. Again, for the signalized data, the effect of STATE on crash counts may be 
confounded with that of other variables such as LIGHT, PROT_LT, HAZRAT, NODRWYl, 
MEDWIDTHl, and even ADTl, all of which strongly correlate with STATE. The general strategy 
will be to see which variable has the chief effect, in accordance with common sense, and, thereafter, 
to determine which remaining variable, if any, has a significant effect on the residual, i.e., the portion 
of the crash count not predicted by the chief variable. 
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5.MODELING 

In this chapter, we use the sample data to develop generalized linear models of the Poisson/negative 
binomial type for the mean number of crashes per unit time at an intersection in terms of the 
intersection variables discussed in earlier chapters. These models summarize the data collected. It 
is hoped that they have predictive value for other data sets from the same intersection classes. 

The chapter begins with a review of some of the theoretical aspects of model building and 
measurement of goodness of fit. Thereafter, models are built for each of the three classes of 
intersections. This is done for each of the four crash variables - TOTA CC, TOTA CCI, INJACC, 
and INJACCI. We study how these variables can be represented in terms of major and minor road 
ADT, and then we add variables with the aim of improving the fit and discovering design elements 
that might affect safety. 

Separate models are also developed for TOTACCS and TOTACCM in the case of the signalized 
intersections. These models use only the flows F1, F2, F3, and F4 as explanatory variables. 

Finally, the main models for TOTACCI are subjected to residual analysis to uncover systematic 
shortcomings. 

THEORY 

Modeling 

We shall use a negative binomial model with mean a generalized linear function of intersection 
variables. Thus, 

(5.1) 

where µi is the mean number of crashes to be expected at intersection number i in a given time 
period; xi2, ••• , xim• are the values of the intersection variables at this intersection during that time 
period (xii = 1 corresponds to the intercept term); and p1, ••• ,PP are coefficients to be estimated by 
the modeling. More sensitively, one might say that µi is the grand mean of crashes to be expected 
at a hypothetical population of intersections having the same values as intersection number i for the 
intersection variables considered. Variables not included in the model account for differences in the 
expected number of crashes among members of this population, and these differences are described 
by the term overdispersion. See Hauer et al. ( 1988). The variance ( aY of the number of crashes in 
this population under the model is: 
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where K is the overdispersion parameter. The second term on the right side of this equation 
represents the variation in means among different members of the population existing even when all 
intersections have the same value for the considered intersection variables. In principle, K could also 
depend on these intersection variables, but for simplicity, that possibility is ignored. 

Under the negative binomial model, the probability ofyi crashes at intersection number i is given 
by: 

P(y;) = 

I'(y.+_!_) K .!_ 
__ '_K_ ( f.1; )Y; ( 1 )K 

r 1 1 +Kµ; 1 +Kµ; 
Y;! (-) 

K 

When K equals 0, the negative binomial reduces to the Poisson model. The larger the value ofK, 
the more variability there is in the data over and above that associated with the mean µ; . 

The coefficients pj are estimated by maximizing the log-likelihood function L(p, K) for the negative 
binomial distribution. The likelihood function is the probability that the values y 1, ••• , YN would be 
observed for intersections number 1 through N. If crash counts are independent at the different 
intersections, the likelihood is: 

and application of the logarithm yields the log-likelihood function: 

L(P,K) = 

L; [(Lj~~ log(l +Kj)) - log(l +Ky;) + Y;logµ; - (yi+ ~)log(l +Kµ;) - log(y;!)] 

(5.2) 

Here, P = (p 1, •••• , Pp) is the vector of coefficients, Yi is now taken to be the observed crash count at 
intersection no. i, and µi is given by equation (5.1). The values of P and K that maximize the 
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function L(p, K) in (5.2) are the estimated coefficient vector p and the estimated overdispersion 
parameter It The estimated value of µi obtained by substituting P and .R. for p and K in equation 
(5.1) is denoted by Yi· For convenience, the same letters will often be used for both the parameters 
and their estimated values, i.e., carets ( /\) will be omitted in references to P and .R.. 

P-Values and Goodness of Fit 

The modeling of the data in this study was done using SAS and LIMDEP software. Along with 
approximate maximum likelihood estimates for the regression coefficients, these software packages 
yield estimates of the standard error for each coefficient. From these, P-values can be computed for 
the null hypothesis that the true value of some regression coefficient is zero. The z-score of the 
estimated coefficient is the estimated coefficient minus zero, divided by the estimated standard error. 
The P-value is the probability that a normal random variable has an absolute value larger than the 
z-score obtained. If the P-value is small, we have good evidence that the corresponding variable is 
significant, that the difference between the coefficient estimate and zero arises not from chance, but 
from a systematic effect. Even ifthe P-value is large, the parameter estimate has some value since 
the null hypothesis that the parameter is zero is a somewhat arbitrary starting point and the estimate 
obtained is the one dictated by the data. A large P-value lowers our confidence in the estimate and 
indicates that even if the basic model form is correct, the true coefficient may be quite different from 
the one estimated. One may expect the true coefficient to be within one or two estimated standard 
errors of the estimated coefficient. 

Goodness-of-fit measures associated with Poisson-type models have been introduced and reviewed 
by Fridstmm et al. (1995) and Miaou (1996). For the modeling, we shall use three measures of 
goodness-of-fit. 

One measure is the ordinary R-squared, or coefficient of determination, used in linear regression 
models: 

(5.3) 

where 

Yi = observed crash count for intersection no. i, 

y = average crash count for the sample, and 

y1 = estimated mean crash count for intersection no. i. 
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This measure is used because of its great familiarity. In case a model with no variables is used, i.e., 
in equation (5.1), µi = exp(p0) so that there is only a constant or intercept term in the linear 
expression, the maximum likelihood estimate for Po can be shown to yield 

fi = Y 

and hence, R2 equals zero. This model is called the zero model. At the other extreme, it might, in 
principle, happen that 

Y; = Y; 

for each i, and hence, R2 equals 1. The value of R2 is always less than or equal to 1 by definition. 
It is greater than or equal to zero since maximum likelihood guarantees a result at least as good as 
the zero model. 

Fridstr0m et al. (1995) have pointed out that in Poisson or negative binomial models, R2 is very 
unlikely to equal 1 since a Poisson-type variable takes a variety of values other than its mean, and 
Yi is unlikely to equal the estimated mean Yi for each i in a sample of any appreciable size. They 
have proposed taking a ratio of R2 to its largest expected value P2 under a best fit as a measure of 
goodness-of-fit. 

A form of this that they recommend for negative binomial models is the log-likelihood R-squared, 
based on the deviance nm of the model. The deviance of a model m is: 

D m = 2 (L f - L m) 

where 

is the log-likelihood that would be achieved if the model did give a perfect fit (µi =Yi for each i, and 
K = 0). Such a model is called the full or saturated model by Fridstrnm et al. Lm is the log­
likelihood, as in (5.2), of the model under consideration (µi= Yi). If the latter model is correct, nm 
is approximately a chi-squared random variable with degrees of freedom equal to the number N of 
observations minus the number of parameters. The number of parameters is (p + 1 ), where p is the 
number of explanatory variables in the model plus the intercept, and the extra 1 is for the 
overdispersion parameter. 
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Fridstrnm et al. propose the following measures: 

Dm 

N - p - 1 
=1-( 0 ) 

D 

p2 
D 

2 
RPD = 

N - 2 

Dm 
E 

R2 
D 

p2 
D 

(5.4) 

(5.5) 

(5.6) 

Here D0 is the deviance of a model with only two parameters - the constant term (intercept) and 
the overdispersion parameter; p is the number of parameters of the model m under consideration (not 
including the overdispersion parameter in the model); and DE m is the expected value of the deviance 
in the case where a Poisson model with the same means Yi as the model m is the correct one. 
Roughly speaking, R0 

2 indicates how much explanatory power results from adding the highway 
characteristics and RPD2 represents this as a fraction of the highest possible expected explanatory 
power of any model with the same means as m. 

A third measure of goodness-of-fit, proposed by Miaou (1996), is based explicitly on the 
overdispersion parameter: 

R 2 = 1 -K 
K 

(5.7) 

Here, K is the overdispersion parameter estimated in the model, and K,,,ax is the overdispersion 
parameter estimated in the zero model. Based on simulations, Miaou concluded that this measure 
shows promise. It is simple to calculate, it yields a value between 0 and 1, it has the "proportionate 
increase" property (Miaou proposes as a criterion that independent variables of equal importance, 
when added to a model, increase the value of the measure by the same absolute amount regardless 
of the order in which they are added), and it is independent of the choice of intercept term in the 
model. 
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Model Building 

Adopting Miaou's parameter as a measure of goodness-of-fit is equivalent to taking the over­
dispersion parameter as such a measure. A smaller overdispersion parameter signifies a better fit. 
Such improvement may occur because explanatory variables have been discovered or because the 
number of independent variables is large relative to the sample size. 

Akaike has proposed a criterion for judging models, and a corrected version of this, applicable to 
small samples, has been developed by Hurvich and Tsai. See Miaou (1996, Chapter 4) for a 
discussion. This statistic, in a form relevant to negative binomial models, is: 

CAICNB = -2L(~$) + 2(p + 1) + 2<P + l)(p + 2> 
N - p - 2 

(5.8) 

where N is the sample size and p is the number of parameters in the model (excluding the 
overdispersion parameter). Models with smaller values of CAICNB are deemed to be better fits. This 
measure involves a trade-off between increased probability and a penalty for adding parameters on 
small data sets. lfN = oo, the last term is dropped and the uncorrected Akaike criterion results. Even 
without the last term, the criterion includes a penalty in the second term for adding parameters. 

The model building described in subsequent sections of this chapter is guided by certain principles. 
Intersection variables of known importance, namely ADTl and ADT2, should be included in the 
model. Other variables with understandable interpretations, i.e., those presented in the previous 
chapter (some of which were developed in the course of the modeling), are added to the model 
provided they satisfy some combination of the criteria below: 

• Engineering and intuitive judgments should be able to confirm the validity and practicality 
of the sign and rough magnitude of the estimated coefficient of each variable. 

• Among variables that measure strongly overlapping properties, at most one, will be used. 

• Examination ofresiduals Yi - Yi under a predecessor model not including the variable should 
indicate that the variable is strongly correlated with the residual. 

• Inclusion of the variable should lead to reductions of the overdispersion parameter and 
CAI~B• increases in the R-squared values, and respectable P-values for the estimated 
coefficient of the variable to the extent possible. 

These criteria are guidelines rather than precise and strict requirements, since model-building is an 
art rather than a science. 
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MODELS FOR THREE-LEGGED INTERSECTIONS 

Tables 28, 29, 30, and 31 show negative binomial models of crashes in terms of intersection 
variables for the three-legged intersections. 

TABLE 28. Negative Binomial Models for Crashes per Year (TOTACC), Three-Legged 
Intersections 

Estimated regression coefficients (estimated standard error and P-value in parentheses). I Variables I ADT only /Main Model / Variant 

Intercept -12.9243 -12.2196 -12.2577 
(2.3682, 0.0001) (2.3575, 0.0001) (2.3626, 0.0001) 

Logof ADTl 1.1989 1.1479 1.1778 
(0.2477, 0.0001) (0.2527, 0.0001) (0.2517, 0.0001) 

LogofADT2 0.3027 0.2624 0.2034 
(0.0892, 0.0007) (0.0866, 0.0024) (0.1032, 0.0487) 

MEDWIDTHl -0.0546 -0.0551 
(in feet), major road (0.0249, 0.0285) (0.0246, 0.0254) 

NODRWYl, 0.0391 0.0414 
driveways (0.0239, 0.1023) (0.0245, 0.0912) 
to 250 ft, major road 

PK%LEFT1 0.0544 
major road (0.0471, 0.2479) 

N,p 84,3 84,5 84, 6 

K 0.5256 (0.1366, 0.0001) 0.3893 (0.1160, 0.0008) 0.3658 (0.1095,0.0008) 

Ri 0.5158 0.6413 0.6630 

Ri 0.2294 0.4351 0.4473 

Rfi, Pfi 0.1821, 0.5628 0.2247, 0.5589 0.2275, 0.5524 
R~n 0.3237 0.4021 0.4119 

CAICNB 381.930 373.887 373.742 

1ft=0.305 m 

Table 28 indicates that the regression coefficient for (the log of) major road ADT is about four to 
five times that for minor road ADT. Among the next most significant variables, as measured by 
residuals after use of the ADT-only model, are NODRWYl, MEDWIDTHI, and SPDl. A second 
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TABLE 29. Negative Binomial Models for Crashes per Year (TOTACCI), Three-Legged 
Intersections 

Estimated regression coefficients (estimated standard error and P-value in parentheses). 

Variables ADT only Main Model Variant 1 Variant 2 Variant 3 

Intercept -16.1636 -15.4661 -16.6179 -15.7008 -13.6339 
(3.4655, 0.0001) (3.4685, 0.0001) (3.3126, 0.0001) (3.3955, 0.0001) (3.0516, 0.0001) 

Log 1.5023 1.4331 1.6117 1.4962 1.1954 
of ADTl (0.3507, 0.0001) (0.3608, 0.0001) (0.3541, 0.0001) (0.3530, 0.0001) (0.3109, 0.0001) 

Log 0.2904 0.2686 0.1276 0.1801 0.2646 
ofADT2 (0.1001, 0.0037) (0.0988, 0.0065) (0.1283, 0.3199) (0.1187, 0.1294) (0.1014, 0.0091) 

MEDWIDTHl -0.0612 -0.0687 -0.0607 
ft (0.0360, 0.0888) (0.0384, 0.0738) (0.0340, 0.0739) 

NODRWYl 0.0560 0.0552 0.0597 0.0903 
major road (0.0289, 0.0525) (0.0290, 0.0565) (0.0283, 0.0350) (0.0266, 0.0007) 

PK%TURN 0.0401 
(0.0215, 0.0617) 

PK%LEFT1, 0.0764 
major road (0.0665, 0.2509) 

VEI-1, vertical 0.1180 
out to 800 ft, (0.0700, 0.0919) 

major road 

HAU 0.0197 
angle (0.0174, 0.2591) 

N,p 84,3 84,5 84, 6 84,6 84,6 

K 0.7332 0.5118 0.4195 0.4416 0.4416 
(0.2068, 0.0004) (0.1719, 0.0029) (0.1478, 0.0046) (0.1513, 0.0035) (0.1642, 0.0072) 

R2 
K 

0.5139 0.6607 0.7072 0.7072 
0.7219 

R2 0.1666 0.4452 0.4644 0.4757 0.4287 

Rf,, Pf, 0.1731, 0.5322 0.2233, 0.5374 0.2491, 0.5356 0.2371, 0.5313 0.2278, 0.5196 

R~D 0.3253 0.4155 0.4652 0.4462 0.4384 

CAICNB 326.278 317.747 313.620 315.800 317.480 

1ft=0.305 m 
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TABLE 30. Negative Binomial Models for Crashes per Year (INJACC), Three-Legged 
Intersections 

Estimated regression coefficients (estimated standard error and P-value in parentheses). I Variables I ADT only I Variant I I Variant 2 

Intercept -13.1685 -12.3246 -11.0061 
(3.0319, 0.0001) (2.8076, 0.0001) (2.6937,0 .0001) 

LogofADTl 1.2028 1.1436 0.9526 
(0.3082, 0.0001) (0.2763, 0.0001) (0.2843, 0.0008) 

LogofADT2 0.1925 0.1357 0.1499 
(0.0931, 0.0388) (0.1029, 0.1872) (0.0916, 0.1018) 

HAU 0.0230 0.0289 
angle (0.0131, 0.0790) (0.0105, 0.0061) 

NODRWYl, driveways 0.0481 
out to 250 ft, major road (0.0262, 0.0664) 

ABSGRDl, average 0.1838 
grade, major road (0.1130, 0.1038) 

N,p 84,3 84,4 84,6 

K 0.5649 (0.2032, 0.0055) 0.3787 (0.1792, 0.0346) 0.2588 (0.1848, 0.1613) 

Ri 0.4535 0.6336 0.7496 

R2 0.1400 0.3755 0.4505 

Rfi, Pfi 0.1437, 0.4039 0.1841, 0.3966 0.2036, 0.3837 

R:o 0.3558 0.4644 0.5306 

CAICNB 274.653 269.275 268.081 

1ft=0.305 m 

tier of significant variables includes PK%TRUCK and LTLNl. All of these variables correlate with 
NODRWYl and MEDWIDTHl (see Table 18), and when the latter two variables are added, the 
others become much less significant. However, it is also true that NODRWYl and MEDWIDTHl 
correlate strongly with each other (correlation coefficient -0.37654 and P-value 0.0004). 
Nonetheless, we keep them both because they seem to have separate effects in the main model of 
Table 28. When we consider residuals for the main model, the angle variables DEV and HAU show 
positive correlation, as do turning percentage variables. If we add an angle variable and a turning 
percentage variable to the model, the overdispersion parameter K reduces to about 0.29, but the P-
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TABLE 31. Negative Binomial Models for Crashes per Year (INJACCI), Three-Legged 
Intersections 

Estimated regression coefficients (estimated standard error and P-value in parentheses). I Variables I ADT only I Variant 1 I Variant 2 

Intercept -14.6858 -13.9216 -12.4996 
(4.0902, 0.0004) (3. 7706, 0.0003) (3.5376, 0.0004) 

Logof ADTl 1.3145 1.2616 1.0701 
(0.4202, 0.0018) (0.3810, 0.0009) (0.3691, 0.0037) 

Logof ADT2 0.2179 0.1629 0.1657 
(0.1076, 0.0429) (0.1097, 0.1373) (0.1019, 0.1038) 

HAU 0.0253 0.0319 
angle (0.0205, 0.2179) (0.0138, 0.0205) 

NODRWYl driveways 0.0487 
out to 250 ft, major rd (0.0302, 0.1068) 

VEl-1 vertical out to 0.1555 
800 ft (0.1075, 0.1479) 

N,p 84,3 84,4 84, 6 

K 0.7219 (0.2846, .0112) 0.4857 (0.2401, 0.0431) 0.3295 (0.2723, 0.2263) 

Ri 0.4725 0.6451 0.7592 

Ri 0.1470 0.3674 0.4119 

Rfi, Pfi 0.1375, 0.3848 0.1786, 0.3816 0.2084, 0.3774 

R~n 0.3573 0.4680 0.5522 

CAICNB 240.718 235.734 233.492 

1ft=0.305 m 

values for the angle variable range from 0.30 to 0.39. We have retained only one variant model in 
Table 28. Note that inclusion of PK%LEFT1 in the variant reduces the coefficient of the log of 
ADT2, not unexpectedly, since these variables are correlated. 

In Table 29, similar models are shown for TOTACCI. With crashes restricted to those that are 
intersection-related, the effect of ADTl becomes stronger. Two variant models show the slightly 
different effects of two turning percentage variables: one has smaller P-values and a larger R2

, the 
other has smaller CAICNB and the other two R-squared measures are larger; they give differing 
magnitudes to the minor road coefficient. A third variant shows that vertical alignment VEI-1 and 
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the angle variable HAU in a suitable combination, but not without each other, have some explanatory 
va.lue in place of MEDWIDTHl. 

When we tum to serious crashes (INJACC and INJACCI) in Tables 30 and 31, the importance of 
ADTl relative to ADT2 continues to increase. In addition, MEDWIDTHl ceases to be significant 
and HAU becomes an important variable. Recall from Figures 2 and 3 that the sign of HAU is 
positive when a driver turning from the major road across traffic need only turn through a small 
angle. According to these models, this increases crashes. This suggests that perhaps the more 
relevant movement is turning from the minor road. A driver turning right from the minor road may 
have the illusion of easy access, but inadequate visibility for traffic on the major road traveling in 
the same direction, while a driver turning left will have poor visibility of the traffic that must be 
crossed. Only 17% of the three-legged intersections had HAU different from zero (cf. Table 5), and 
the ones with HAU higher than zero had more injury crashes than average and the ones with HAU 
lower than zero had fewer crashes. Recall from Table 11 that HAU has a strong positive correlation 
with all crash types. With MEDWIDTHl removed and HAU added, NODRWYI and one of the two 
vertical alignment variables VEI-1 or ABSGRDl also contribute to injury crashes in the other 
models shown in Tables 30 and 31. 

Variables not included in these models, such as STATE, sight distances, and HEI-1, had very 
insignificant P-values after inclusion of the variables shown in the tables. 

The three-legged models have the following general features: 

• TOTACC and TOTACCI models are similar, INJACC and INJACCI models are similar. 

• For all four crash variables, ADTl, ADT2, and NODRWYl are influential. 

• For TOTACC and TOTACCI, MEDWIDTHl and turning percentage are influential. 

• For INJACC and INJACCI, the angle variable HAU and vertical alignment are influential, 
and, to some extent, this is also true for TOTACCI. 

MODELS FOR FOUR-LEGGED INTERSECTIONS 

The models for the four-legged intersections are exhibited in Tables 32, 33, and 34. 

Table 32 shows models for TOT ACC. In the absence of other variables, minor road ADT appears 
to be more influential than major road ADT. When other variables are added, in particular, turning 
and through percentages, ADTl becomes much more influential than ADT2. The variables that 
correlate most strongly with the residuals of the ADT-only model are RSDR2, PK%LEFT1, 
LTLNlS, and STATE, in order. However, when these variables are added to the models, the ones 
that are most significant are PK%LEFT1 and LTLNlS. Both of them correlate strongly with 
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TABLE 32. Negative Binomial Models for Crashes per Year (TOTACC), Four-Legged 
Intersections 

Estimated regression coefficients (estimated standard error and P-value in parentheses). 

Variables ADT only Main Model Variant 1 Variant 2 Variant 3 

Intercept -6.9352 -9.46311 -10.1902 -10.9526 -9.7859 
(2.3767, 0.0035) (2.5991, 0.0003) (3.3126, 0.0021) (2.5907, 0.0001) (2.6032, 0.0002) 

Log 0.4683 0.8503 0.8873 1.0382 0.8894 
of ADTl (0.2330, 0.0444) (0.2779, 0.0022) (0.2653, 0.0008) (0.2870, 0.0003) (0.2873, 0.0020) 

Log 0.5135 0.3294 0.2924 0.2206 0.2845 
ofADT2 (0.0896, 0.0001) (0.1255, 0.0087) (0.1316, 0.0263) (0.1219, 0.0704) (0.1375, 0.0385) 

PK%LEFT1, 0.1100 0.2976 0.1054 
major road (0.0412, 0.0076) (0.1393, 0.0326) (0.0372, 0.0046) 

LTLNlS -0.4841 -0.6607 -0.5471 
(0or1) (0.2311, 0.0362) (0.2347, 0.0049) (0.2445, 0.0252) 

PK%LEFT1 -0.0131 
squared (0.0094, 0.1643) 

PK%THRU2 0.0220 
minor road (0.0107, 0.0391) 

ABSGRDl 0.1553 
major road (0.1123, 0.1666) 

PK%TURN 0.0351 
(0.0238, 0.1404) 

lOOxRSDR2 2.284 
(100Xl/ft) 1ft=0.305 m (1.503, 0.1286) 

N,p 72,3 72, 5 72,5 70, 7 72, 6 

K 0.6144 0.4578 0.4820 0.3682 0.4183 
(0.1562, 0.0001) (0.1307, 0.0005) (0.1425, 0.0007) (0.1124, 0.0011) (0.1147, 0.0003) 

R~ 0.3801 0.5381 0.5136 0.5953 0.5780 

R2 0.2565 0.3109 0.2520 0.4797 0.4494 

Rfi, Pfi 0.1080, 0.6011 0.1623, 0.5858 0.2557, 0.5874 0.1575, 0.5666 0.1635, 0.5792 

R~n 0.1796 0.2771 0.2557 0.2780 0.2822 

CAICNB 385.168 374.948 377.165 369.829 374.870 
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TABLE 33. Negative Binomial Models for Crashes per Year (TOTACCI), Four-Legged 
Intersections 

Estimated regression coefficients (estimated standard error and P-value in parentheses). 

Variables ADT only Main Model Variant 1 Variant 2 Variant 3 

Intercept -7.2501 -11.1096 -10.9008 -11.8796 -13.2806 
(2.9094, 0.0130) (3.3345, 0.0008) (3.3257, 0.0010) (3.2980, 0.0004) (3.2833, 0.0001) 

Log 0.4582 0.9299 0.9325 1.0161 1.2160 
of ADTl (0.2844, 0.1071) (0.3433, 0.0067) (0.3452, 0.0069) (0.3382, 0.0027) (0.3434, 0.0004) 

Log 0.5311 0.3536 0.3498 0.2866 0.2195 
ofADT2 (0.0996, 0.0001) (0.1163, 0.0024) (0.1300, 0.0071) (0.1336, 0.0319) (0.1279, 0.0862) 

PK%LEFT1 0.1491 0.1427 0.3854 0.1396 
major road (0.0586, 0.0110) (0.0583, 0.0144) (0.1674, 0.0213) (0.0540, 0.0097) 

LTLNlS -0.2891 -0.4890 
(0 or 1) (0.2920, 0.3222) (0.2970, 0.0998) 

PK%LEFT1 -0.0172 
squared (0.0111, 0.1221) 

PK%THRU2 0.0284 
minor road (0.0145, 0.0511) 

ABSGRDl 0.1698 
major road (0.1353, 0.2093) 

N,p 72,3 72,4 72, 5 72,5 70, 7 

K 0.8814 0.7096 0.6901 0.6548 0.5556 
(0.2267, 0.0001) (0.1906, 0.0002) (0.1827, 0.0002) (0.1779, 0.0002) (0.1512, 0.0002) 

R~ 0.3338 0.4637 0.4784 0.5051 0.5498 

R2 0.2323 0.1587 0.1952 0.1646 0.3675 

R~, p~ 0.0814, 0.5802 0.1334, 0.5715 0.1273, 0.5646 0.1410, 0.5665 0.1275, 0.5470 

R~D 0.1403 0.2334 0.2255 0.2488 0.2332 

CAICNB 350.887 341.404 342.541 340.135 337.889 

117 



TABLE 34. Negative Binomial Models for Crashes per Year (INJACC and INJACCI), 
Four-Legged Intersections 

Estimated regression coefficients (estimated standard error and P-value in parentheses). 

Variables ADT-only Variant 1 ADT-only Variant 1 
INJACC INJACC INJACCI INJACCI 

Intercept -9.8454 -12.5296 -9.7977 -13.5576 
(2.5675, 0.0001) (2.9908, 0.0001) (3.2819, 0.0028) (3.9998, 0.0008) 

Logof ADTl 0.7224 0.9505 0.6735 0.9918 
(0.2591, 0.0053) (0.3284, 0.0038) (0.3285, 0.0403) (0.4268, 0.0201) 

LogofADT2 0.4778 0.3237 0.5138 0.3310 
(0.1401, 0.0007) (0.1645, 0.0491) (0.1604, 0.0014) (0.1894, 0.0805) 

PK%LEFT1 0.0994 0.1228 
major road (0.0433, 0.0216) (0.0614, 0.0457) 

SPD2 0.0339 0.0429 
(in mph) (0.0179, 0.0577) (0.0240, 0.0740) 

N,p 72,3 72, 5 72,3 72,5 

K 0.5741 0.4308 0.9671 0.7178 
(0.1821, 0.0016) (0.1824, 0.0182) (0.2899, 0.0009) (0.2716, 0.0082) 

R~ 0.4218 0.5662 0.3449 0.5138 

Ri 0.2445 0.3565 0.1987 0.3237 

Rfi, Pfi 0.1197, 0.4817 0.1550, 0.4654 0.0834, 0.4812 0.1214, 0.4680 

R:D 0.2485 0.3331 0.1734 0.2593 

CAICNB 294.271 289.919 275.196 270.302 

1mph=1.61 km/h 

STATE, and STATE ceases to correlate significantly with the residual of this new model. 
PK%LEFT1 and LTLNlS correlate with each other as well, having a correlation coefficient of 
-0.2288 and a P-value of 0.0532, but both of them still seem to contribute to the accident count. 

The original major road left-tum lane variable L TLNl talces values 0, 1, and 2, but only 4 out of 72 
four-legged intersections (see table 6) have exactly one left-tum lane. One can model the left-tum 
lanes on the major road using two regression coefficients (dividing the intersections into three 
subclasses), but the quantity of data does not support this option. If one uses only the variable 
LTLNl, one is adopting the bias that two turning lanes have double the safety effect of one. Our 
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data suggest that two left-turning lanes are less safe than one: a model with coefficients for each case 
gives a larger negative coefficient when there is one turning lane than when there are two. The 
variable LTLNlS takes the value 1 when there is at least one left-turning lane on the major road. 
This, in effect, divides the intersections into two classes and avoids any assumptions about the 
relative safety of intersections with one versus two left-turning lanes. (A similar approach is used 
in the next section with the signalized data where PROT _LT indicates at least one protected left tum 
on the major road.) Variant 1 is a model that indicates a quadratic dependence of crash count on 
PK%LEFT1. This model does not perform as well as the main model, but is present because 
residuals for the main model correlate negatively with PK%LEFT1. We will discuss this issue 
further in connection with Table 33. lfLTLNlS is added to the Variant 1 model of Table 32, the 
quadratic term in PK%LEFT1 becomes insignificant, with a P-value going to 0.3962. 

The next most significant variable after those in the main model is PK% THRU2. There are reasons 
to be wary of adding two turning percentages because of the strong correlations among ADT 1, 
ADT2, PK%LEFT1, and PK%LEFT2 (see Tables 16 and 19). Also, two intersections must be 
removed from the sample for which the minor legs had no traffic approaching the intersection during 
the peak-hour visits. However, if PK%THRU2 is added, it is significant. The design variable 
ABSGRDl is also included in Variant 2. 

Variant 3 in Table 32 is obtained by using PK%TURN rather than PK%LEFT1 and proceeding to 
add significant variables. The average sight distance right from the minor road in feet, represented 
here by its reciprocal multiplied by 100, is known to be correlated with all types of crashes (see 
Table 12). Also, it has a strong correlation with the residuals from other models, but when it is 
added to models, Variant 3 is the only model where its regression coefficient achieves a relatively 
small P-value. 

In Table 33, similar models are done for TOTACCI. The results are similar except that LTLNlS 
is less significant. A version of Table 32, Variant 3, is not shown because the P-values of LTLNlS 
and RSDR2 rise from 0.0252 and 0.1286 to 0.2594 and 0.3108, respectively. 

We discern again a quadratic dependency on PK%LEFT1 (compare Variant 2 in Table 33 with 
Variant 1 in Table 32). A quadratic of the form ax - bx2 with a and b positive has its maximum when 
x = a/2b. The two quadratic models have maximum contribution from PK%LEFT1 at the values 
0.2976/(2x0.0131) = 11.36 and 0.3854/(2x0.0172) = 11.20, respectively. This suggests that when 
the left-tum percentage from the major road is less than 11 %, crashes rise with increasing 
percentage, but that when it is greater, crashes fall with increasing percentage. Among the 72 
intersections upon which the model is based, 5 of them have PK%LEFT1 in excess of 11 %. 

Variant 1 in Table 33 includes LTLNlS, and yields improvement in Kand R2
, but not in R~0 or 

CAICNB or P-values. Likewise, Variant 3 in Table 33 includes the design variables LTLN 1 S and 
ABSGRDl. Without them, but with PK%LEFT1 and PK%THRU2 retained, in a model for 
TOTACCI that we do not display, the overdispersion parameter K is larger (0.6261), R2 is smaller 
(0.1260), and Rk is smaller (0.2261), but CAICNB is also smaller (337.641). This is a reminder that 
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the various criteria do not always have consistent trends. In addition, the behavior of CAICNB 
suggests the possibility that a regime is being entered where overfitting occurs. Overfitting occurs 
when random variation in a set of input variables is used to explain the random variation in a single 
output variable. When the number of input variables is a significant fraction of the sample size, 
some combination of the noises in the input variables may, by coincidence, approximate the 
variation in the output variable without having predictive value. 

Models for INJACC and INJACCI are shown in Table 34. Turning percentages are significant for 
these models and so is posted minor road speed SPD2, but other design variables fail to be. 
PK%THRU2 is marginally significant with a P-value of about 0.19, but it has been omitted, in part, 
because the interpretation is unclear. Since SPD2 correlates negatively with STATE, one might 
suspect that its influence is due to that source, but ST ATE itself is not significant in the presence of 
the ADT variables and PK%LEFT1. 

The general features of the models for the four-legged intersections are: 

• Turning percentage, along with major and minor road ADT, are influential for all crash 
types. 

• LTLNlS, which registers the presence of one or more left-tum lanes on the major road, is 
influential for TOTACC and marginally so for TOTACCI. 

• Grade and poor sight distance right from the minor road are marginally significant for 
TOTACC and TOTACCI. 

• High minor road posted speed appears to contribute to serious crashes. 

MODELS FOR THE SIGNALIZED INTERSECTIONS 

Negative Binomial Models 

The signalized intersections present special difficulties As shown in Table 26 and Figure 9, at first 
appearances, the dependence of crashes on major road ADT is negligible. Likewise, the correlation 
coefficient between crashes and ADTl is insignificant in Table 12. An ADI-only model for 
TOTACC in terms of the logs of ADTl and ADT2 actually assigns a negative (but insignificant) 
regression coefficient to the log of ADTl. 

Part of the insignificance perhaps stems from the small sample size - only 49 signalized 
intersections. However, at signalized intersections, minor and major roads tend to have more equal 
standing. If their standing is equal, their ADT's should enter into any model symmetrically. For 
example, the coefficient of ADTl would be the same as that of ADT2 except for noise. We have 
attempted to address that possibility by using the log of the product, log(ADTl xADT2), as a variable 

120 



in some of the signalized models below. At the same time, ADT by itself becomes less important. 
Signalized intersections, one may argue, are less stereotypical than other rural intersections. On the 
latter, the division between major road and minor road is more pronounced and the turning 
percentages on each fall into a narrower range. More important on the signalized intersections, one 
would judge, are the movements of the vehicles through the intersection. Turning percentages, left 
and right, from all approaches and flows along each approach are likely to be more determinative 
of crashes. 

There is also the issue of how to define the major road. Usually, and in this study, it is taken to be 
the road with the larger ADT. But ifthere is significant turning along certain legs, legs of the same 
road may have drastically different ADT. Most of the ADT may be on two adjacent legs, say legs 
1 and 4, and very little on the other two adjacent legs, legs 2 and 3. See Figure 1. Usually, the major 
road has a lower percentage of turning traffic than the minor road, but it is possible that a road with 
less traffic would have virtually no turning traffic (all of it through), while the crossroad has much 
more traffic and a significant amount of it is turning. In the data, an asymmetry can occur between 
minor road turning traffic and major road turning traffic. This can be caused by failure of the 
morning and evening peak hours to match up, by unusual travel hours to and from locations, or even 
by alternative routes. 

Despite these considerations, the models exhibited here take ADT to be primary, in part because of 
its familiarity and acceptability to the engineering community and in part to permit comparisons with 
other models that use ADT. Yet, it should be recognized that rural signalized intersections are a 
transitional class where variables other than ADT may prove to be more appropriate. This is 
addressed in the subsection after this one, where models of single and multiple-vehicle crashes in 
terms of traffic flows are briefly investigated. 

In Tables 35, 36, and 37 are shown negative binomial models for crashes on the signalized two-lane 
by two-lane intersections. ADT-only models are omitted since when ADTl and ADT2 are 
separated, ADTl is insignificant and has a coefficient of negative sign, and when they are united in 
the form log(ADTl xADT2), the model coefficients are somewhat unstable (SAS and LIMDEP give 
rather different values for the regression coefficients, but the same log likelihood, indicating that the 
maximum occurs at a hard-to-find set of values on a large relatively flat plateau). When variables 
that correlate well with the residuals to these models are added, the models settle down and the ADT 
variables share in the significance. 

Table 35 shows models for TOTACC. The existence of one or more protected left turns on the 
major road at the signal is an influential variable. It correlates strongly with STA TE, as noted 
earlier, and it is possible that there is a combined effect here. A total of 17 out of 18 California 
signalized intersections had one or more protected left turns on the major road, while only 4 out of 
31 Michigan signalized intersections did. Nonetheless, when PROT_LT is added to the model 
versus STATE, the former improves the model more than the latter, and the correlation between the 
residual of a PROT_LT model and the STATE variable is negligible. 
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TABLE 35. Negative Binomial Models for Crashes per Year (TOTACC), Signalized 
Intersections 

Estimated regression coefficients (estimated standard error and P-value in parentheses). 

Variables Main Model Variant 1 Variant 2 Variant 3 

Intercept -6.9536 -6.1236 -6.3658 -5.4091 
(2.7911, 0.0132) (2.5973, 0.0184) (3.3207, 0.0552) (3.0054, 0.0718) 

LogofADTl 0.6199 0.6475 
(0.2504, 0.0133) (0.3156, 0.0402) 

LogofADT2 0.3948 0.2104 
(0.1737, 0.0230) (0.2232, 0.3459) 

Log of 0.4643 0.3914 
ADTlxADT2 (0.1483, 0.0017) (0.1732, 0.0238) 

PROT LT -0.6754 -0.6110 -0.7181 -0.5980 
0=no,1 =yes (0.1824, 0.0002) (0.1507, 0.0001) (0.1973, 0.0003) (0.1690, 0.0004) 

PK%LEFT2 -0.0142 -0.0134 
minor road (0.0047, 0.0023) (0.0048, 0.0052) 

PK%LEFT1 0.0220 0.0137 
major road (0.0142, 0.1207) (0.0116, 0.2388) 

VEICOM 0.1299 0.1243 0.1001 0.1044 
vertical, all (0.0450, 0.0039) (0.0507, 0.0142) (0.0508, 0.0486) (0.0618, 0.0914) 

legs 

PK%TRUCK 0.0315 0.0300 0.0353 0.0317 
truck% (0.0143, 0.0275) (0.0141, 0.0331) (0.0175, 0.0441) (0.0167, 0.0573) 

N,p 49, 7 49,6 49,7 49, 6 

K 0.1161 0.1186 0.1353 0.1422 
(0.0323, 0.0003) (0.0317, 0.0002) (0.0341, 0.0001) (0.0375, 0.0002) 

R~ 0.6490 0.6414 0.5910 0.5701 

R2 0.5053 0.5208 0.5134 0.5172 

Rfi, Pfi 0.1479, 0.6262 0.1619, 0.6349 0.1059, 0.6263 0.1123, 0.6351 
R~D 0.2362 0.2550 0.1691 0.1768 

CAICNB 358.508 356.471 363.937 363.044 
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TABLE 36. Negative Binomial Models for Crashes per Year (TOTACCI), Signalized 
Intersections 

Estimated regression coefficients (estimated standard error and P-val ue in parentheses). 

Variables Main Model Variant 1 Variant 2 Variant 3 

Intercept -6.0841 -4.9564 -4.1075 -5.4581 
(33865, 0.0724) (3.0779, 0.1074) (2.9461, 0.1633) (3.1937, 0.0874) 

LogofADTl 0.5951 0.5995 
(0.2847, 0.0366) (0.2795, 0.0319) 

LogofADT2 0.2935 0.2015 
(0.1972, 0.1366) (0.1917, 0.2932) 

Log of 0.3857 0.3320 
ADTlxADT2 (0.1788, 0.0309) (0.1719, 0.0534) 

PROT LT -0.4708 -0.3822 -0.3025 -0.4041 
0 =no, 1 =yes (0.2000, 0.0186) (0.1668, 0.0220) (0.1745, 0.0830) (0.1883, 0.0319) 

PK%LEFT2 -0.0165 -0.0153 -0.0160 -0.0177 
minor road (0.0057, 0.0036) (0.0060, 0.0101) (0.0055, 0.0038) (0.0050, 0.0005) 

VEICOM 0.1126 0.1033 0.0996 0.1114 
vertical, (0.0365, 0.0020) (0.0416, 0.0130) (0.0382, 0.0091) (0.0326, 0.0006) 

all legs 

PK%TRUCK 0.0289 0.0268 0.0234 0.0256 
truck% (0.0131, 0.0276) (0.0131, 0.0398) (0.0122, 0.0547) (0.0117, 0.0287) 

NODRWYl 0.0347 0.0407 
major road (0.0270, 0.1986) (0.0246, 0.0983) 

N,p 49,7 49, 6 49,7 49,8 

K 0.1313 0.1354 0.1222 0.1145 
(0.0392, 0.0008) (0.0390, 0.0005) (0.0374, 0.0011) (0.0401, 0.0043) 

R~ 0.5521 0.5382 0.5834 0.6094 

Ri 0.3650 0.3913 0.4563 0.4327 

Rfi, Pfi 0.0944, 0.5854 0.1053, 0.5951 0.1067, 0.5853 0.1044, 0.5751 
R~o 0.1612 0.1770 0.1822 0.1816 

CAICNB 342.266 340.672 340.831 341.551 
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TABLE 37. Negative Binomial Models for Crashes per Year (INJACC, INJACCI}, 
Signalized Intersections 

Estimated regression coefficients (estimated standard error and P-value in parentheses). I Variables I INJACC I INJACCI I 
Intercept -3.2562 -1.5475 

(2.9932, 0.2767) (3.0298, 0.6095) 

Log of 0.2358 0.1290 
ADTlxADT2 (0.1722, 0.1707) (0.1757, 0.4627) 

PROT LT -0.2943 
0=no,1 =yes (0.1864, 0.1144) 

PK%LEFT2 -0.0113 -0.0149 
minor road (0.0062, 0.0678) (0.0066, 0.0250) 

VEICOM 0.0822 0.0686 
vertical, (0.0551, 0.1358) (0.0692, 0.1858) 

all legs 

PK%TRUCK 0.0323 0.0282 
truck% (0.0146, 0.0267) (0.0152, 0.0628) 

N,p 49,6 49,5 

K 0.1630 0.1433 
(0.0662, 0.0138) (0.0692, 0.0385) 

R~ 0.4474 0.4829 

Ri 0.3275 0.3488 

Rfi, Pfi 0.0420, 0.4926 0.0665, 0.4565 
R~o 0.0853 0.1458 

CAICNB 285.287 265.687 

Other significant variables shown in the main model of Table 35 include PK%TRUCK, VEICOM, 
and PK%LEFT2. 

Crashes rise at signalized intersections with a higher percentage of truck traffic and with more 
vertical curvature out to 800 feet (244 meters) on any or all approaches. Trucks at a signal, as well 
as having greater destructive capacity than passenger vehicles, take a long time to engage in turning 
maneuvers and block visibility during this time. In Table 13, almost all vertical variables correlate 
positively with crashes, although few have significant P-values. The combination that is most 
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significant in the modeling is VEICOM. VEICOM is an average change of grade per 100 feet (30.5 
meters) along both major and minor roads for vertical curves at least partly within 800 feet (244 
meters) of the intersection center. One may wonder why VEICOM is more significant than VI COM, 
the comparable measure out to 250 feet (76 meters). Signalized intersections are rarely placed 
immediately beside vertical curves, but are often found to be displaced from them by hundreds of 
yards or meters. The mean, median, and standard deviation of VI COM are 1. 79, 1.2, and 0.28, 
respectively, while those for VEICOM are 1.88, 1.43, and 0.27. The difference in medians, in 
particular, shows that vertical curves partly within 800 feet (244 meters) of the intersection, but not 
within 250 feet (76 meters), increase the average. 

Crashes fall with increasing PK%LEFT2, the left-tum percentage on the minor road. PK%LEFT2 
is the most significant of the turning percentage variables, but the others are also significant. 
PK%LEFT2 is, of course, equivalent to (100 - PK%THRU2 - PK%RIGHT2), i.e., to the sum of 
PK% THRU2 and PK%RIGHT2, and each of the latter two variables correlates positively with 
crashes (see Table 23). PK%LEFT2 correlates negatively with PK%LEFT1 and thus the latter 
should increase crashes. Variants 2 and 3 in Table 35 show that this is indeed the case, but that the 
P-value rises. Note also that the P-value for the log of ADT2 becomes rather large in Variant 2, 
presumably due to the strong positive correlation between PK%LEFT1 and ADT2 (Table 17). 

The difference between the Main Model in Table 35 and Variant 1 is in the use of 
Log(ADTlxADT2) rather than the individual logs. In fact, Variant 1 gives a smaller value of 
CAICNB and a larger value of R2

• The decrease in CAICNs suggests that Variant 1 may be the 
superior model: it has about the same explanatory value, but with fewer variables. In the Main 
Model, we have elected to exhibit coefficients for ADTl and ADT2 separately, partly to allow 
comparison with other models. When they are combined in Variant 1, the new coefficient is 
intermediate between the separate coefficients. The estimated difference in the two coefficients in 
the Main Model is, of course, 0.6199 - 0.3948 = 0.2251. Using the estimated covariance matrix for 
the model, we find that the estimated standard error of the estimated difference is [(0.2504)2 + 
(0.1737)2 

- 2x0.0039226]112
"' 0.2916. This gives a P-value of0.4401 for testing the hypothesis that 

the coefficients are different. In other words, the Main Model does not allow us to reject the 
hypothesis that the regression coefficients of the logs of ADTl and ADT2 are the same. 

The models for TOTACCI in Table 36 are similar to those in Table 35, except that the P-value of 
ADT2 increases and the variable NODRWYl is marginally significant in Variant 2 and significant 
in Variant 3. Variant 3 has an unacceptably high P-value for ADT2. NODRWY2 and the combined 
variable NODRWYCOM, although positively correlated with crashes, do not achieve as good a P­
value as NODRWYl. NODRWYl also correlates positively with TOTACC, and in a TOTACC 
model with the same variables as Variant 2 of Table 36, gives a P-value of 0.2270. Surprisingly, 
its P-value in Variant 2 ofTable 36, 0.1986, is lower. This is a surprise because TOTACCI attempts 
to eliminate driveway crashes with no intersection involvement. We have omitted variant models 
in which PK%LEFT1 is used instead of PK%LEFT2. In one such model, the P-value of ADT2 
jumps to 0.6481, although other variables behave well; in another model with LOG(ADTl xADT2), 
ADT behaves well, but VEICOM and PK%LEFT1 have P-values of 0.2402 and 0.3263, 
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respectively. 

For both TOTACC and TOTACCI, variables such as LIGHT and LTLNl correlate well with the 
residuals of the models shown, LIGHT positively and LTLNl negatively. When these variables are 
added to the models, they are also marginally significant. However, the values of CAICNB do not 
decrease, and concern about overfitting leads us to omit them. 

In Table 37, we present one model each for INJACC and INJACCI. The coefficient of the log of 
ADT2 is quite insignificant because of large standard error. So we only exhibit models using 
LOG(ADTl xADT2). Even with these, the P-value deteriorates substantially. In addition, VEICOM 
becomes less significant and PROT_LT attains, in the case ofINJACCI, a P-value of 0.5666 (not 
shown). 

The main features of the signalized intersection models are: 

• ADTl is insignificant for all crash types when ADT2 is present but without other variables. 

• PK%TRUCK and the turning percentages, especially PK%LEFT2, are significant for all 
crash types. 

• The existence of one or more protected left turns on the major road, as well as major and 
minor road vertical curves, is significant for TOTACC and TOTACCI, becoming less 
significant for INJACC and insignificant for INJACCI. 

• NODRWYl is marginally significant for TOTACC and TOTACCI, but not for serious 
accidents. 

• For TOTACC and TOTACCI models, in general, ADTl becomes more significant as 
variables are added, while ADT2 gets less significant, sharing its influence with turning 
percentage. 

Flow Models 

The signalized intersections, as noted, behave somewhat peculiarly with respect to ADT. This 
suggests a more detailed analysis, making use of flows and crash types. Here we examine a few 
models based on the decomposition of TOTACC into single-vehicle crashes and multiple-vehicle 
crashes by the variables TOTACCS and TOTACCM. Although many single-vehicle crashes may 
in fact be multiple-vehicle crashes in which other vehicles escape unscathed, we proceed as if this 
decomposition is valid. 

For single-vehicle crashes, one approach is to regard them as functions of incoming flows, with 
minor and major legs treated on an equal footing and without interaction terms. An underlying 
rationale is that single-vehicle crashes depend on same-direction traffic as well as intersection 
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features other than traffic, such features including perhaps pedestrian traffic, intersection geometry, 
roadside hazards, obstructions that limit sight distances, signal timing, etc. Then one might expect 
that the number of such crashes is proportional to some power of the flow. Although such a view 
is not particularly consistent with the evidence in Table 21, we pursue the approach and indicate the 
outcome. 

A negative binomial model with mean number of single-vehicle crashes per unit time of the form 

is sought with variance equal to µ + Kµ 2
• The unknowns are the multiplicative constant C, the 

power a, and the overdispersion parameter K. For a given power a, LIMDEP or SAS will choose 
the pair (C, K) to maximize the probability (or log-likelihood) of the observed numbers y of single­
vehicle crashes given the observed values of Fl> F2, F3, and F4• The crude strategy we follow, 
suggested by the measure Ri_, is to vary a and choose the triple (C, a, K) that yields the smallest 
value for K (and hence the largest for Ri.). 

When this is done, the resulting model is as follows: 

SINGLE-VEHICLE CRASH MODEL, SIGNALIZED INTERSECTIONS 

where 
µ is the mean number of single-vehicle crashes per year, 

the intersection flows are F1, F2 F3, and F4 in thousands of vehicles per day, and 

the overdispersion parameter K = 0.4670. 

The constant term -1.9218 has an estimated standard error of0.1419 and a P-value of0.0001, and 
the overdispersion parameter 0.4670 has an estimated standard error of 0.1993 and a P-value of 
0.0192. Because of the modeling technique, an estimated standard error for the power a= 0.01 is 
not available. 
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The power 0.01 is evidently quite small. Indeed, the so-called zero model is not substantially 
different from the one above. It is: 

µ. = exp-1.6727 

with overdispersion parameter K = 0.4674. Here the intercept -1.6727 has an estimated standard 
error of 0.1419 and a P-value of0.0001, and the overdispersion parameter has a standard error of 
0.1998 and a P-value of 0.0193. The overdispersion parameter of the zero model is only slightly 
larger than that of the proposed single-vehicle crash model. Given the size of the standard errors 
involved, this suggests that single-vehicle crashes are not appropriately estimated by this model 
form. 

Turning to the multiple-vehicle crashes, we look for a negative binomial model of the form 

for which there are six unknown parameters: C, a, b, p, c, and the overdispersion parameter K. The 
first four terms represent interactions of adjacent flows and the last two represent interactions of 
opposing flows. Minor and major roads are represented symmetrically in this model form, but left 
versus right distinctions are maintained since a need not be equal to b, and adjacent flow interactions 
are not assumed to be of the same magnitude as opposite flow interactions, i.e., p need not be equal 
to 1 nor are the powers a and b constrained in relation to the power c. 

The modeling methodology employed here, similar to that for the single-vehicle crash model, is to 
fix the quadruple {a, b, c, p) and apply SAS or LIMDEP to yield a maximum likelihood model for 
the observed number y of multiple-vehicle crashes given the observed flows F1, F2, F3, and F4• This 
yields values for the pair (C, K). Then the values of the quadruple (a, b, c, p) are varied in such a 
way as to minimize K. 

The resulting model is the following: 
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MULTIPLE-VEHICLE CRASH MODEL. SIGNALIZED INTERSECTIONS 

where 
µis the mean number of multiple-vehicle crashes per year, 

the intersection flows are F1, F2, F3, and F4 in thousands of vehicles per day, and 

the overdispersion parameter K = 0.2936. 

The constant term -0.4420 has an estimated standard error of 0.1015 and a P-value of 0.0001, and 
the overdispersion parameter 0.2936 has an estimated standard error of 0.0696 and a P-value of 
0.0001. Because of the modeling technique, estimated standard errors for the powers a= b = 0.3, 
c = 0, and p = 0.95 are not available. 

These results indicate that the product of opposing flows, at least when summed over both 
approaches, does not significantly contribute to the crash rate. The sum of the 0.3 powers of 
adjacent flow products is the relevant variable, and a linear transformation is applied to it. If the 
flow on any two opposite legs is zero, the mean number of multiple-vehicle crashes per year is 
estimated to be exp(-0.4420)x(0.95)"' 0.61. Perhaps the chief point of interest is that the powers 
a and b tum out to be at least roughly equal, with values close to those in the models of Tables 35 
and 36 (Variant 1). Note also that the overdispersion parameter for TOTACCM, 0.2936, is 
significantly larger than those shown in the TOTACC models of Table 35. 

Many additional ideas could be explored along the lines introduced here. In particular, in view of 
Table 21, model forms that stress minor leg flows could be considered. Other crash decompositions 
could be considered, including TOTACCI, INJACC, INJACCI, time of day, or crash type. 

RESIDUAL ANALYSIS 

For the three Main Models ofTOTACCI, from Tables 29, 33, and 36, graphs of cumulative scaled 
residuals versus explanatory variables are plotted in Figures 11 through 22. For an explanatory 
variable x, a plot is made of J versus the quantity 
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(5.9) 

called the cumulative scaled residual. The variable J runs through the set of values that the 
explanatory variable x assumes on the data set. The terms in (5.9) are scaled residuals and should 
each be approximately unbiased with mean square equal to 1 if the model form and estimated Yi and 
K are essentially correct. However, if the sum depends in some regular way on the values of J, then 
the model may have missed some systematic effects (e.g., quadratic dependency). If there is no 
systematic effect and the terms are otherwise independent, the expected value of the sum is 
approximately zero, and its standard deviation is approximately the square root of the number of 
observations for which x ~ J. For the three samples 184 "' 9, 172 "' 8.5, and 149 = 7, and these 
numbers are indications of the permissible order of magnitude of the sum. The cumulative scaled 
residuals should represent the net distance traveled after each step in a random walk that ends at the 
sum of the scaled residuals for the entire data set. 

For the Main Models in Tables 29, 33, and 36, the overall sums of the scaled residuals are 5.7, -0.5, 
and -0.2, respectively. Thus, the corresponding graphs should wander from a height of 0 to these 
heights in a random manner. 

Figures 11 through 14 refer to the Main Model for TOTACCI in Table 29 (three-legged 
intersections). The explanatory variables are ADTl, ADT2, MEDWIDTHl, and NODRWYl. The 
graphs of scaled residuals versus each of these four variables exhibit regions of systematic trends. 
This suggests that separate models might capture the crash counts better with variables restricted to 
smaller ranges. 

Figures 15, 16, and 17 refer to the Main Model for TOTACCI in Table 33 (four-legged inter­
sections). The explanatory variables are ADTl, ADT2, and PK%LEFT1. Another variable, 
LTLNl S, which indicates the presence ofleft-turn lanes on the major road, is marginally significant, 
but is categorical in nature and hence does not lend itself to detailed residual analysis. In any case, 
it is not included in the Main Model. Figures 16 and 17 indicate that there may be quadratic 
dependence on ADT2 (Log of ADT2) and/or PK%LEFT1. Table 33 does include a model (Variant 
2) with quadratic dependence on PK%LEFT2, which appears to be an improvement over the Main 
Model according to the various R-squared measures. The horizontal outlier in Figure 15 is a four­
legged intersection with a major road ADT of73,000. When it was removed from the sample and 
modeling was done without it, there were small but insignificant changes to the estimated regression 
coefficients and the estimated overdispersion parameter. It was not found to be unduly influential. 
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FIGURE 11. Cumulative Scaled Residual Versus ADTl for Three-Legged Intersections, 
TOTACCI Main Model of Table 29 

The cumulative scaled residual varies from -7.2 to 10.2, ending at 5.7. It is positive for 38 out of 
84 intersections. In the middle range of ADT, the model at first overpredicts (negative slope) and 
then underpredicts (positive slope). 
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FIGURE 12. Cumulative Scaled Residual Versus ADT2 for Three-Legged Intersections, 
TOTACCI Main Model of Table 29 

The cumulative scaled residual varies from -4.5 to 7.9, ending at 5.7. It is positive for 65 out of 
84 intersections. For low values of ADT2, the model underpredicts. 
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FIGURE 13. Cumulative Scaled Residual Versus MEDWIDTHl for Three-Legged 
Intersections, TOTACCI Main Model of Table 29 

The cumulative scaled residual varies from -7.2 to 6.2, ending at 5.7. It is positive for 32 out of 
84 intersections. On the eight intersections with median widths from 12 to 16 feet (3.7 to 4.9 
meters), the model underpredicts on average. 
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FIGURE 14. Cumulative Scaled Residual Versus NODRWYl for Three-Legged 
Intersections, TOTACCI Main Model of Table 29 

The cumulative scaled residual varies from -3.1to10.9, ending at 5.7. It is positive for 69 out of 
84 intersections. When there are few driveways, the model tends to underpredict crashes. 
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FIGURE 15. Cumulative Scaled Residual Versus ADTl for Four-Legged Intersections, 
TOTACCI Main Model of Table 33 

The cumulative scaled residual varies from -4.5 to 5.2, ending at -0.5. It is positive for 27 out of 
72 intersections. 
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FIGURE 16. Cumulative Scaled Residual Versus ADT2 for Four-Legged Intersections, 
TOTA CCI Main Model of Table 33 

The cumulative scaled residual varies from -6.1 to 3.5, ending at -0.5. It is positive for 26 out of 
72 intersections. There is some indication of quadratic dependence on ADT2 or Log of ADT2 to 
describe overprediction at low values of ADT2 and underprediction at higher values. 
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FIGURE 17. Cumulative Scaled Residual Versus PK%LEFT1 for Four-Legged 
Intersections, TOTA CCI Main Model of Table 33 

The cumulative scaled residual varies from -8.4 to 2.6, ending at -0.5. It is positive for 12 out of 72 
intersections. There is some indication of overprediction at lower turning percentages, followed by 
underprediction at somewhat higher turning percentages. A quadratic model addresses this matter 
in Variant 2 of Table 33, starting out with a smaller intercept and steeper slope, but with the slope 
becoming smaller as PK%LEFT1 increases. 
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FIGURE 18. Cumulative Scaled Residual Versus ADTl for Signalized Intersections, 
TOTACCI Main Model of Table 36 

The cumulative scaled residual varies from -3.1 to 3.9, ending at -0.2. It is positive for 31 out of 
49 intersections. 
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FIGURE 19. Cumulative Scaled Residual Versus ADT2 for Signalized Intersections, 
TOTA CCI Main Model of Table 36 

The cumulative scaled residual varies from -5.4 to 4.2, ending at -0.2. It is positive for 29 out of 
49 intersections. 
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FIGURE 20. Cumulative Scaled Residual Versus PK%LEFT2 for Signalized 
Intersections, TOTACCI Main Model of Table 36 

The cumulative scaled residual varies from -3.2 to 2.9, ending at -0.2. It is positive for 24 out of 
49 intersections. 
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FIGURE 21. Cumulative Scaled Residual Versus VEICOM for Signalized Intersections, 
TOTACCI Main Model of Table 36 

The cumulative scaled residual varies from -4.6 to 3.2, ending at -0.2. It is positive for 19 out of 
49 intersections. 
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FIGURE 22. Cumulative Scaled Residual Versus PK% TRUCK for Signalized 
Intersections, TOTACCI Main Model of Table 36 

The cumulative scaled residual varies from -3.4 to 2.0, ending at -0.2. It is positive for 27 out of 
49 intersections. 
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Cumulative residuals for the TOTACCI Main Model of Table 36 (signalized intersections) are 
plotted in Figures 18 through 22. The explanatory variables are ADTl, ADT2, PROT_LT, 
PK%LEFT2, VEICOM, and PK% TRUCK. The variable PROT LT is not used in the residual 
analysis since it is categorical. The figures show what appear to be random walks with no particular 
systematic effects. Indeed, the fact that they stay relatively close to zero suggests that possibly 
overfitting is occurring. 

Table 38 shows the range of values for the cumulative scaled residuals of all variables in the 
TOTACCI Main Models. The range is quite consistent with the square roots of the sample sizes. 
For PROT_LT, the sum of the scaled residuals over all signalized intersections without a protected 
left turn is 0.45, so that the signalized models slightly underpredict crashes on intersections without 
major road protected left turns. Since there are 28 signalized intersections without protected left 
turns, the average scaled residual is 0.45/28 = 0.016. The overall cumulative sum being -0.2, it fol-

TABLE 38. Cumulative Scaled Residuals Versus Increasing Value of Intersection 
Variables, TOTACCI Main Models 

Intersection Range of Cumulative 
Variable Scaled Residual 

84 three-legged ADTl -7.2 to +10.2 
intersections 
(Table 29 Main ADT2 -4.5 to +7.9 

Model) MEDWIDTHl -7.2 to +6.2 

184"" 9 NODRWYl -3.1 to+ 10.9 

72 four-legged ADTl -4.5 to +5.2 
intersections 
(Table 33 Main ADT2 -6.1 to +3.5 

Model) fl2"" 8.5 PK%LEFT1 -8.4 to +2.6 

ADTl -3.1 to +3.9 

49 signalized ADT2 -5.4 to +4.2 

intersections PK%LEFT2 -3.2 to +2.9 
(Table 35 Main 
Model) VEICOM -4.6 to +3.2 

PK%TRUCK -3.4 to +2.0 

149=7 PROT LT -0.2, +0.45 
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lows that the sum of the scaled residuals on the intersections where major road protected left turns 
are present is -0.65, for an average on the latter intersections of -0.65/21 ~ -0.031. Thus, the model 
slightly overpredicts on the intersections that have major road protected left turns. 

In summary, 

• The three-legged Main Model for TOTACCI might be improved by partitioning the 
intersection variables into smaller ranges and developing models for each range. 

• The four-legged Main Model for TOTACCI might be improved by including quadratic 
dependence on ADT2 or the log of ADT2 and/or PK%LEFT1. 

• The signalized Main Model for TOTACCI has well-behaved residuals, possibly an indication 
of overfitting. 

In view of the relatively small sample sizes, the models all behave reasonably well. 

A residual analysis was not done for the TOTACC models, although it is believed that it would 
yield similar results. 
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6. CONCLUSIONS 

In this chapter, we exhibit the Main Models for TOTACC and TOTACCI again. Then, we use these 
models and the log-likelihood R2 to decompose the variation in crashes into proportions due to 
different variables. We also develop Accident Reduction Factors for the models. Finally, we review 
and summarize ideas in this study. 

THE MAIN MODELS 

Three-Legged Intersections 

I. Three-legged rural intersections of a four-lane major road with stop-controlled two-lane minor 
road. TOTACC Main Model {Table 28) 

Negative Binomial Model with K = 0.389 

f = NUMBER OF YEARS x (ADTJ) 1·
148 x (ADT2)6·

262 x exp(-12.220) 
x exp(-0.0546xMEDWIDTHJ + 0.0391xNODRWYJ) 

where the variables are: 

~=predicted mean number of crashes within 250 feet (76 meters) of the intersection 
center 

NUMBER OF YEARS 

ADTl = average two-way major road traffic in vehicles per day 

ADT2 = average two-way minor road traffic in vehicles per day 

MED WIDTH I =the major road median width in feet 

NODRWYl =the number ofresidential and commercial driveways on the major road 
within 250 feet (76 meters) of the intersection center. 

NOTE: A metric version of this model is obtained by replacing - 0.0546xMEDWIDTH1 above 
with -0.179x MEDWIDTHlm, where MEDWIDTHlm =the major road median width in meters. 
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II. Three-legged rural intersections of a four-lane major road with stop-controlled two-lane minor 
road. TOTACCI Main Model (Table 29) 

Negative Binomial Model with K = 0.512 

j = NUMBER OF YEARS x (ADTJ)t.433 x (ADT2)0
·
269 x exp(-15.466) 

x exp(-0.0612xMEDWIDTHJ + 0.0560xNODRWY1) 

where the variables are: 

-S =predicted mean number of intersection-related crashes within 250 feet (76 meters) 
of the intersection center 

NUMBER OF YEARS 

ADTl = average two-way major road traffic in vehicles per day 

ADT2 = average two-way minor road traffic in vehicles per day 

MEDWIDTHl =the major road median width in feet 

NODRWYl =the number of residential and commercial driveways on the major road 
within 250 feet (76 meters) of the intersection center. 

NOTE: A metric version of this model is obtained by replacing - 0.0612xMEDWIDTHl above 
with -0.20lx MEDWIDTHlm, where MEDWIDTHlm =the major road median width in meters. 
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Four-Legged Intersections 

I. Four-legged rural intersections of a four-lane major road with stop-controlled two-lane minor 
roads. TOT ACC Main Model (Table 32) 

Negative Binomial Model with K = 0.458 

f = NUMBER OF YEARS x (ADTJ)o.sso x (ADT2)0·329 x exp(-9.463) 
x exp(O.UOxPK%LEFTJ - 0.4S4xLTLNJS) 

where the variables are: 

"9' =predicted mean number of crashes within 250 feet (76 meters) of the intersection 
center 

NUMBER OF YEARS 

ADTl = average two-way major road traffic in vehicles per day 

ADT2 = average two-way minor road traffic in vehicles per day 

PK%LEFT1 =the percentage of incoming major road traffic during peak hours that turns 
left 

LTLNlS = 0 ifthe major road has no left-tum lane, 1 ifthe major road has at least one 
left-tum lane. 
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II. Four-legged rural intersections of a four-lane major road with stop-controlled two-lane minor 
roads, TOTACCI Main Model (Table 33) 

Negative Binomial Model with K = 0.710 

j = NUMBER OF YEARS x (ADTJ)0
·
930 x (ADT2)0

·
354 x exp(-11.110) 

x exp(0.149xPK%LEFT1) 

where the variables are: 

'9' =predicted mean number of intersection-related crashes within 250 feet (76 meters) 
of the intersection center 

NUMBER OF YEARS 

ADTl =average two-way major road traffic in vehicles per day 

ADT2 = average two-way minor road traffic in vehicles per day 

PK%LEFT1 =the percentage of all incoming major road traffic during peak hours that 
turns left. 
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Signalized Intersections 

I. Signalized four-legged rural intersections of two-lane roads, TOTACC Main Model (Table 

m 
Negative Binomial Model with K = 0.116 

y = NUMBER OF YEARS x (ADTJ)0
·
620 x (ADT2)0·

395 x exp(-6.954) 
x exp(-0.0142xPK%LEFT2 + 0.0315xPK%TRUCK) 
x exp(-0.675xPROT _LT + 0.130x VE/COM) 

where the variables are: 

-S =predicted mean number of crashes within 250 feet (76 meters) of the intersection 
center 

NUMBER OF YEARS 

ADTl = average two-way major road traffic in vehicles per day 

ADT2 = average two-way minor road traffic in vehicles per day 

PK%LEFT2 = the percentage of all incoming minor road traffic during peak hours that 
turns left 

PK%TRUCK =the percentage of all incoming traffic during peak hours that consists of 
trucks 

PROT LT= 0 ifthe major road has no protected left tum, 1 ifthe major road has at least 
one protected left tum 

VEICOM = (1/2) (VEI-1 + VEl-2) 

VEI-1 =the sum of absolute percent grade change per 100 feet (30.5 meters) for each 
vertical curve along the major road, any portion of which is within 800 feet (244 
meters) of the intersection center, divided by the number of such curves 

VEI-2 =the sum of absolute percent grade change per 100 feet (30.5 meters) for each 
vertical curve along the minor road, any portion of which is within 800 feet (244 

meters) of the intersection center, divided by the number of such curves. 

NOTE: A metric version of this model is obtained by replacing 0.130xVEICOM above with 
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0.0396xVEICOMm, where VEICOMm = (1/2)(VEI-lm + VEI-2J and VEI-lm and VEI-2m are as 
above, except that units of absolute grade change per 100 meters are used for each vertical curve, 
any portion of which is within 244 meters of the intersection center. 

IL Signalized four-legged rural intersections of two-lane roads. TOTACCI Main Model (Table 
Jfil 

Negative Binomial Model with K = 0.131 

j = NUMBER OF YEARS x (ADT1)6·595 x (ADT2)6
·
294 x exp(-6.084) 

x exp(-0.0165xPK%LEFT2 + 0.02S9xPK%TRUCK) 
x exp(-0.41txPROT_LT + 0.113xVEICOM) 

where the variables are: 

"9 =predicted mean number of intersection-related crashes within 250 feet (76 meters) 
of the intersection center 

NUMBER OF YEARS 

ADTl =average two-way major road traffic in vehicles per day 

ADT2 = average two-way minor road traffic in vehicles per day 

PK%LEFT2 =the percentage of all incoming minor road traffic during peak hours that 
turns left 

PK% TRUCK = the percentage of all incoming traffic during peak hours that consists of 
trucks 

PROT LT = 0 if the major road has no protected left tum, 1 if the major road has at least 
one protected left tum 

VEICOM = (1/2) (VEI-1 + VEI-2) 

VEI-1 =the sum of absolute percent grade change per 100 feet (30.5 meters) for each 
vertical curve along the major road, any portion of which is within 800 feet (244 
meters) of the intersection center, divided by the number of such curves 

VEI-2 =the sum of absolute percent grade change per 100 feet (30.5 meters) for each 
vertical curve along the minor road, any portion of which is within 800 feet (244 
meters) of the intersection center, divided by the number of such curves. 
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NOTE: A metric version of this model is obtained by replacing O.l 13xVEICOM above with 
0.0344xVEICOMm, where VEICOMm = (1/2)(VEI-1 m + VEI-2J and VEI-1 m and VEI-2m are as 
above, except that units of absolute grade change per 100 meters are used for each vertical curve, 
any portion of which is within 244 meters of the intersection center. 

EXPLANATORY VALUE OF MAIN MODELS 

A customary way to measure the explanatory value of variables in a model is to note the increment 
to a goodness-of-fit measure as each variable is added to the model. For Poisson and negative 
binomial models, as Fridstmm et al. (1995) have observed, there is inherent randomness in the model 
that needs no explanation. With respect to the log-likelihood R-squared measure proposed by 
Fridstmm et al., negative binomial randomness is represented by 1 - P6 where P6 is as in equation 
(5.5) of Chapter 5. The contribution of other factors is represented by: (i) R6 for the first variable 
when a model with that variable present is used, and (ii) the increment in R6 for each additional 
variable as it is successively added to the model. Recall the definition of R6 in equation (5.4) of 
Chapter 5. Finally, the unexplained portion of variation is Pf>- R5, where R5 is the R-squared value 
obtained when all variables are present. 

Tables 39, 40, and 41 and Figures 23, 24, and 25 decompose the variation according to this method 
for each of the Main Models. 

TABLE 39. Explanation of Variation in Total Crashes by Groups of Covariates, 
Main Three-Legged Intersection Models 

3-Legged Log-Likelihood 
Intersection Coefficient of 

Main Models (Tables 28 and 29) Determination(%) 

TOTACC TOTACCI 

Randomness 44.11 46.26 

Exposure (ADTl, ADT2) 18.21 17.31 

Design (MEDWIDTHl, NODRWYl) 4.26 5.02 

Unexplained 33.42 31.41 

TOTAL 100.00 100.00 
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FIGURE 23. Explanation of Variation of TOTA CC and TOTA CCI 
by Groups of Covariates, Main Negative Binomial Models for Three-Legged Intersections, 

Log-Likelihood R-Squared 

For the three-legged intersections, ADT explains 17 to 18% of the variation, while MEDWIDTHl 
and NODRWYl explain another 4 to 5%. For the four-legged intersections, ADT explains 8 to 10% 
of the variation, while major road left-tum percentage and/or the presence of a major road left-tum 
explains another 5%. 

In sharp contrast, for the signalized intersections, ADT by itself explains a negligible percentage of 
crashes. Turning and truck percentages explain 1to3% and the design variables PROT_LT and 
VEICOM explain between 6 and 13%, depending on the model. As Fridstrnm et al. (1995, p. 11) 
point out, the explanatory value of a variable may well be affected by the order in which variables 
are added. This is amply demonstrated by Table 41 and Figure 25. A more cautious interpretation 
of Table 41 is that in the case of the TOTACC model, 0.34 + 1.46 + 12.99 = 14.79% of the variation 
is explained by the six intersection variables, and in the case of the TOTACCI model, 0.00 + 3.27 
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+ 6.16 = 9.43% of the variation is explained by the six intersection variables. Furthermore, the 
proportion of the explanatory power that is attributable to the individual variables is uncertain. ADT 
alone does not explain much. 

TABLE 40. Explanation of Variation in Total Crashes by Groups of Covariates, 
Main Four-Legged Intersection Models 

4-Legged Log-Likelihood 
Intersection Coefficient of 

Main Models (Tables 32 and 33) Determination (%) 
' 

TOTACC TOTACCI 

Randomness 41.42 42.85 

Exposure (ADTl, ADT2) 10.79 8.14 

PK%LEFT1 2.55 5.20 

LTLNlS 2.89 -

Unexplained 42.35 43.81 

TOTAL 100.00 100.00 

TABLE 41. Explanation of Variation in Total Crashes by Groups of Covariates, 
Main Signalized Intersection Models 

Signalized Log-Likelihood 
Intersection Coefficient of 

Main Models (Tables 35 and 36) Determination (%) 

TOTACC TOTACCI 

Randomness 37.38 41.46 

Exposure (ADTl, ADT2) 0.34 0.00 

PK%LEFT2, PK%TRUCK1 1.46 3.27 

VEICOM, PROT_LT 12.99 6.16 

Unexplained 47.83 49.11 

TOTAL 100.00 100.00 
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FIGURE 24. Explanation of Variation ofTOTACC and TOTACCI 
by Groups of Covariates, Main Negative Binomial Models for Four-Legged Intersections, 

Log-Likelihood R-Squared 
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FIGURE 25. Explanation of Variation of TOTA CC and TOTA CCI 
by Groups of Covariates, Main Negative Binomial Models for Signalized Intersections, 

Log-Likelihood R-Squared 

ACCIDENT REDUCTION FACTORS 

The Main Models yield the Accident Reduction Factors shown in Table 42. Recall that the Accident 
Reduction Factor is the percentage decrease in mean predicted crash count when a variable is 
increased by one unit, all other variables being held fixed. A negative value signifies that crashes 
increase by that percentage when the variable is increased by one unit. 

For the three-legged intersections, the TOTACC and TOTA CCI models yield similar results. It is 
a curiosity that the number of driveways is more significant for intersection-related crashes than for 
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all crashes, given that the former attempts to exclude driveway crashes and the latter does not. 

TABLE 42. Accident Reduction Factors for the Main Models 

3-Legged intersections 

TOTACC Main Model TOTACCI Main Model 
Table 28 Table 29 

MEDWIDTHl 5.3% 6.6% 

NODRWYl -4.0% -5.7% 

4-Legged intersections 

TOTACC Main Model TOTACCI Main Model 
Table 32 Table 33 

PK%LEFT1 -11.6% -16.1% 

LTLNlS 38.4% -

Signalized intersections 

TOTACC Main Model TOTACCI Main Model 
Table 35 Table 36 

PK%LEFT2 1.4% 1.6% 

PK%TRUCK -3.2% -2.9% 

PROT LT 49.1% 37.5% 

VEICOM -13.9% -11.9% 

Note: Negative Accident Reduction Factors signify an increase in accidents. 

For the four-legged intersections, the TOTACC model declares that the presence of one or more left­
tum lanes reduces crashes by 38.4%. LTLNIS had a high P-value (0.3222) when applied to 
TOTACCI and appears only in the Variant 1 and Variant 3 models of Table 33. In the Variant 1 
model, its Accident Reduction Factor is 25.1 %, while that of PK%LEFT1 is -15.3%. The number 
25.1 % is not as large as 38.4%, but is still quite substantial. 

Variables in the signalized intersection models show similar Accident Reduction Factors as one 
passes from TOTA CC to TOTA CCI. Only PROT _LT shows a dramatic decreases in its 
effectiveness by going from 49 .1 % to 3 7 .5%. The two regression coefficients for PROT _LT on 
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which these estimates are based have overlapping confidence intervals so that the difference between 
49.1%and37.5% may be illusory. 

The effect of PK%LEFT1 in different models is of some interest. Consider TOTA CC models for 
all three classes of intersections containing this variable, namely, the Variant Model in Table 28, the 
Main Model in Table 32, and Variant 2 in Table 35. The respective Accident Reduction Factors are 
-5.6%, -11.6%, and -2.2%. For each 1-percent increase in left turns from the major road, crashes 
increase by 5.6%, 11.6%, and 2.2% at three-legged, four-legged, and signalized intersections, 
respectively. A superficial justification of the relative sizes of these numbers runs as follows: at the 
four-legged intersections, a driver turning left from the major road has to worry about traffic from 
both minor legs; at a three-legged intersection, the driver has to worry about traffic from only one 
minor leg; and at a signalized intersection, the driver has to worry about neither minor leg (as long 
as the signal is green). Even if minor road ADT is low, the presence of minor legs requires some 
division of attention. 

SUMMARY 

The Main Models presented at the beginning of this chapter are the primary product of this study. 
There are six such models, one for each of the three intersection classes and for each of the two crash 
types TOTA CC and TOTA CCI. Because our sample sizes were small, we judged it expedient to use 
all observations for model development and reserve none for prediction, so no efforts have been 
made to test the predictive powers of the models. The models are, however, reasonably stable: 
potentially influential observations were removed and the models retained similar coefficients and 
P-values. 

With regard to the two crash types TOTACC and TOTACCI, we do not make a selection. The 
models for each are reasonably consistent with one another, the variables are mostly the same, and 
the regression coefficients are similar. For the three-legged and four-legged intersections, the 
exception is that as one passes from TOTA CC to TOT ACCI, the intercept gets smaller and the 
coefficient of the log of ADTl gets larger. TOTACCI is more sensitive to major road ADT than 
TOTACC. On the signalized intersections, in the same transition, the intercept gets larger and the 
coefficients of the logs of both major and minor ADT get smaller. TOTACCI is less sensitive to 
ADT than TOT ACC. These trends are systematic, but not too much weight should be put on them 
since the standard errors of the coefficients do not preclude the possibility that the true coefficients 
are equal (but there must be a net adjustment downward somewhere since TOT ACCI < TOT ACC). 

Both the TOTA CC models and the TOT ACCI models are equally serviceable. A decision on which 
to use should be based on what they will be used for and how overlapping models will be assembled 
to represent all crashes. Of some importance is agreement among interested parties as to what an 
intersection-related crash is. Desirable properties include simplicity, i.e., an understandable 
definition, and practicality, i.e., one that can be used to extract data from existing or soon-to-exist 
data bases. The treatment of driveway crashes, run-off-road crashes, and minor road crashes that 

157 



are not intersection-related should be addressed. Also, a decision is needed about whether the same 
criteria can be used to define intersection-related crashes for different kinds of intersections: ones 
with two-lane versus four-lane major roads, ones with or without signals, and ones in urban versus 
rural environments. The BMI criteria discussed at the beginning of Chapter 4 were used in this 
study, but they had a limited purpose and scope and their overall applicability should be reassessed. 

The same considerations apply to INJACC versus INJACCI models. Their differences and 
similarities mirror those between the TOTA CC and TOT ACCI models. 

A separate issue is whether injury crash models are needed. A reason not to develop them is that 
it may suffice to apply a percentage to TOTACC or to TOTACCI in order to estimate INJACC or 
INJACCI. Tables 9 and 10 in Chapter4 suggest that injury crashes as a proportion of all accidents 
vary at least by State and by intersection class. However, the State variable in this study seemed to 
have no independent influence, and this is a significant finding of our study. Our evidence suggests 
that serious crashes at three-legged and four-legged intersections are not distributed in the same 
proportion relative to all crashes at different intersections. Although we do not identify Main 
Models for INJACC or INJACCI, we do develop INJACC and INJACCI models. It is worthwhile 
to compare such models with TOTACC/TOTACCI models. For the three-legged intersections, the 
angle variable HAU assumes prominence and median width loses importance. For the four-legged 
intersections, minor road posted speed gains influence and channelization loses influence. On the 
other hand, INJACC/INJACCI models for signalized intersections are similar to the 
TOTACC/TOTACCI models. Since injury crashes are of greater concern to society and are better 
reported, contrasts between models for injury crashes and all crashes deserve attention. 

We also argue that the variant models shown in the tables of Chapter 5 are worthy of attention. 
When P-values are large, it is not possible to confirm that the true regression coefficient is non-zero. 
Thus, an estimated regression coefficient of 0.3 with an estimated standard error of 0.3 could well 
be a fluctuation for a variable whose true coefficient is zero, the variable thus having no bearing on 
crash experience. On the other hand, the fluctuation could run in the opposite direction and the true 
regression coefficient might be 0.6. The estimated coefficient 0.3 summarizes the sample at hand 
accurately (as does its standard error 0.3) and may be regarded as a point estimate for the true 
regression coefficient. It is the single best guess as to what that coefficient is. If its standard error 
is large, there is the possibility that this coefficient might be zero, but the true answer might also be 
twice as large. If engineering judgment supports the sign and rough magnitude of a regression 
coefficient, some latitude is in order. 

Variant 1 in Table 33 is such a case. The variable LTLNlS, representing the existence of a left-tum 
lane, has an estimated coefficient of -0.2891 with an estimated standard error of 0.2920 (and a P­
value of0.3222) in a TOTACCI model. This variable is significant in the TOTACC model and is 
significant in another TOTACCI model, Variant 3 in Table 33. 

All of the models are, of course, subject to caveats. The definitions ofTOTACC and TOTACCI are 
imperfect. California and Michigan assign crashes to an intersection out to different distances along 
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the minor road. TOTACCI in California, but not in Michigan, may contain some driveway crashes 
where a car is entering a driveway. Alignments, sight distances, grades, and median widths are 
subject to measurement errors, and any and all variables may have changed from the time period 
1993-1995 to the time of the field work (1997-1998). 

Of special concern, since they are so prominent in the models, are the peak-hour traffic data. We 
have referred to some of them as turning percentages or peak turning percentages. But they are in 
fact merely a sample of peak-hour turning percentages collected during a portion of peak hours on 
a particular day in 1997-1998 and are averaged between morning and evening. They can be regarded 
as crude estimates of the true average peak-hour turning percentages or truck percentages during 
1993-1995. But even the variable one is trying to estimate is somewhat suspect. A peak hour can 
be defined by a clock definition or by actual experience along a highway. The latter seems more 
pertinent to crash experience, but the former is presumably closer to what we have. 

Yet another issue, one that has not been addressed in this study, is how peak-hour turning 
percentages should relate to ADT. If one were dealing with true mean turning percentage, it would 
seem that a model form would be required that yields zero crashes when all turning percentages are 
zero. As a practical matter, if, for example, major road turning percentages are zero, then we can 
usually assume that there is zero minor road traffic. Relationships can be built into the model form 
to ensure that this happens. Since we are dealing with peak-hour turning percentages rather than true 
mean 24-hour turning percentages, it is possible in principle that the former could be zero without 
the latter being zero and that the latter could adjust itself to be compatible with almost any observed 
values of ADT2 or ADT 1. Rather than address these thorny issues, we have taken an empirical point 
of view and allowed interrelated variables, such as the log of ADTl, the log of ADT2, PK%LEFT1, 
PK%LEFT2, and PK%THRU2, to appear in generalized linear expressions without regard to their 
hypothetical mutual constraints. 

Indeed, especially in the case of the signalized intersections where ADT behaves somewhat 
peculiarly when other variables are missing, as confirmed in Table 26 and Figure 9 as well as Table 
41 and Figure 25, new model forms should be explored that might better describe the data. The 
limited data in this study suggest that at signalized intersections, some measure of turning percentage 
(e.g., PROT_LT, PK%LEFT1, PK%LEFT2) should be adjoined to major and minor road ADT as 
the primary intersection variables. It would also be desirable if new model forms retained some 
affinity with existing forms that have been adequate for other classes. 

One caveat for all of the models is that some variables have rather wide ranges, e.g., NODRWYl, 
PK%LEFT2, PK% TR. The coefficients assigned to these variables represent their behavior as 
linear. Over such wide ranges, piecewise linear or quadratic dependencies might be more 
appropriate. Ezra Hauer has suggested that model forms where the mean number of crashes depends 
on major road ADT through expressions of the form (ADTl)axexp(-bxADTl) or exp(ax(Log of 
ADTl) - bxADTl), with a and b positive, should be explored. Figures 5 and 9, for three-legged and 
signalized intersections, respectively, suggest such a possibility. A similar form could be applied 
to minor road ADT. More elaborate forms could also be considered that allow crash frequency to 
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rise to a maximum as ADTl increases, with the value of ADTl at which the maximum occurs 
depending on ADT2. 

We recapitulate the main points below: 

• The data in this study have shortcomings. These include relatively small sample sizes, peak 
turning percentages and truck percentages measured by samples not contemporary with the 
crash data, and the difficulty of measuring and defining crash and intersection variables. 

• In addition to the six Main Models, alternate models deserve consideration. These include 
variants given in the tables using other variables, the Flow Models in Chapter 5, models that 
restrict the range of certain inputs (piecewise linear) or allow quadratic dependencies, and 
model forms suggested by Hauer. 

• Major road ADT plays a lesser role as one passes from three-legged to four-legged to 
signalized intersections, with turning percentage measures becoming more important, and 
unexplained crash frequency variation increasing (Figures 23, 24, and 25). 

• The six Main Models adequately summarize the data in this study, with the choice of a crash 
variable TOTACC (all crashes within 250 feet (76 meters)) or TOTACCI (all intersection­
related crashes within 250 feet (76 meters)) to be determined by other criteria. 
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APPENDIX. DATA FROM PILOT STUDY PHASE OF DATA COLLECTION 

During the pilot study phase of data collection for this report, in March and May 1997, plates were 
used to collect traffic data on minor legs of signalized intersections in Michigan and radar guns were 
used to measure operating speeds on all legs of intersections in both California and Michigan. 
Figures A-1, A-2, and A-3 exhibit some relationships obtained from these data. In addition an area­
of-influence study was done on a few selected intersections to judge whether crashes near the 
intersection were intersection-related. Figure A-4 shows the findings for one such intersection. 

Figure A-1 is a graph of posted speed versus observed operating speed at signalized intersections. 
Operating speeds were determined by radar guns aimed along the road toward the intersection during 
daytime hours out of sight of the intersection or far enough away so that drivers typically had not 
begun to slow. The graph shows that many drivers exceed the posted speed limit, but that the excess 
tends to be less at low and high speeds and greater at intermediate speeds. 

Figure A-2 is a graph of daytime speeds versus 24-hour speeds along minor legs approaching 
Michigan signalized intersections. Daytime speeds were measured by radar guns, and 24-hour 
speeds by HISTAR/NU-METRICS plate counts. It is apparent that the 24-hour speeds are lower, 
although some of the extreme cases may represent miscalibration of the radar guns and/or the plates. 

Figure A-3 shows that truck percentage in off-hours tends to be higher than in peak hours. At the 
end of Chapter 4, it is noted that a.m. truck percentage is higher than p.m. truck percentage as well, 
and that Miaou et al. (1988) have called for studies of truck percentage by time-of-day. Between 
a.m. and p.m., a rough reversal of movements was found for all traffic (e.g., southbound 
predominance in a.m., northbound in p.m.) although variances were large. Truck percentage is a 
small portion of the total during peak hours, and may be larger in off-hours, chiefly because 
noncommercial traffic lessens. 

A few intersections in this study were examined in detail, in an effort to analyze the area of influence 
of an intersection, i.e., how far out from the intersection center intersection-related crashes are likely 
to be found. For this purpose, all crashes within 500 feet (152 meters) of the intersection center were 
examined. Figure A-4 shows crash locations for one such intersection. A distance of 250 feet (76 
meters) from the intersection center includes most intersection-related crashes, misses a few, and 
picks up a few that are not intersection-related. Crashes that are not intersection-related are more 
likely to be found on the outward bound lanes :from the intersection center. One State highway 
engineer reported intersection-related crashes that occurred on roads that did not pass through the 
intersection. During heavy traffic, a driver turning onto an intersection leg from a side road is 
sometimes involved in a crash related to the main intersection. 
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24 Signalized Intersections, Pilot Studies, CA & Ml, 1997 
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Operating speeds were measured during daytime hours 
by radar guns well away from the intersection. 
1mph=1.61 km/h 

FIGURE A-1. Posted Speed Versus Operating Speed 
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Daytime Speed vs. 24-hour Speed 
19 Signalized Intersections, Minor Legs, Michigan, May 1997 
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Daytime speeds were measured by radar guns. 
24-hour speeds were measured by HISTARJNU-METRICS plate counts. 
1mph=1.61 km/h 

FIGURE A-2. Daytime Speed Versus 24-Hour Speed 
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PEAK TRUCK PERCENTAGE VERSUS 24-HOUR TRUCK PERCENTAGE 
19 Signalized Intersections, Minor Legs, Michigan, May 1997 
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Peak Truck Percentages were measured by daytime manual count. 
24-hour Truck Percentages were measured by HISTAR/NU-METRICS plate 
counts. 

FIGURE A-3. Peak Truck Percentage Versus 24-Hour Truck Percentage 
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CA State Route 28 intersects Fox Street in Placer County. This intersection (cnty_rte = "03028 3 lZ", milepost= 10.025) has minor leg 
stop control, is of the T type, four-lane by two-lane, with a right angle, and no medians on any leg. The intersection is in rolling terrain 
with a HAZRAT equal to 2. The longitudinal sight distance for leg 1 is 800 feet (244 meters). Although the intersection is defined as 
"rural," it is in the Lake Tahoe resort area with 12 commercial driveways along legs 1 and 2 within ±250 feet (76 meters) of the intersection 
center. This is a high-crash intersection with 17 crashes occurring within ±500 feet (152 meters) of the intersection center during the years 
1993-1995. On the basis ofreview ofHSIS files, the crashes with numbers in parentheses were deemed not to be intersection-related. 
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1 ft= 0.305 meters 
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FIGURE A-4. Crash Locations and Relationships at a Three-Legged Intersection 
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